MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliniseg Unicode version

Theorem eliniseg 5042
Description: Membership in an initial segment. The idiom  ( `' A " { B } ), meaning  { x  |  x A B }, is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
eliniseg.1  |-  C  e. 
_V
Assertion
Ref Expression
eliniseg  |-  ( B  e.  V  ->  ( C  e.  ( `' A " { B }
)  <->  C A B ) )

Proof of Theorem eliniseg
StepHypRef Expression
1 eliniseg.1 . 2  |-  C  e. 
_V
2 elimasng 5039 . . . 4  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( C  e.  ( `' A " { B } )  <->  <. B ,  C >.  e.  `' A
) )
3 df-br 4024 . . . 4  |-  ( B `' A C  <->  <. B ,  C >.  e.  `' A
)
42, 3syl6bbr 254 . . 3  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( C  e.  ( `' A " { B } )  <->  B `' A C ) )
5 brcnvg 4862 . . 3  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( B `' A C 
<->  C A B ) )
64, 5bitrd 244 . 2  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( C  e.  ( `' A " { B } )  <->  C A B ) )
71, 6mpan2 652 1  |-  ( B  e.  V  ->  ( C  e.  ( `' A " { B }
)  <->  C A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   _Vcvv 2788   {csn 3640   <.cop 3643   class class class wbr 4023   `'ccnv 4688   "cima 4692
This theorem is referenced by:  epini  5043  iniseg  5044  dfco2a  5173  isomin  5834  isoini  5835  fnse  6232  infxpenlem  7641  fpwwe2lem8  8259  fpwwe2lem12  8263  fpwwe2lem13  8264  fpwwe2  8265  canth4  8269  canthwelem  8272  pwfseqlem4  8284  fz1isolem  11399  itg1addlem4  19054  elnlfn  22508  elpred  24177  pw2f1ocnv  27130
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702
  Copyright terms: Public domain W3C validator