Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintg Structured version   Unicode version

Theorem elintg 4060
 Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
elintg
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem elintg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq1 2498 . 2
2 eleq1 2498 . . 3
32ralbidv 2727 . 2
4 vex 2961 . . 3
54elint2 4059 . 2
61, 3, 5vtoclbg 3014 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wceq 1653   wcel 1726  wral 2707  cint 4052 This theorem is referenced by:  elinti  4061  elrint  4093  onmindif  4673  onmindif2  4794  mremre  13831  toponmre  17159  1stcfb  17510  uffixfr  17957  plycpn  20208  insiga  24522  dfon2lem8  25419  trintALTVD  29054  trintALT  29055 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-v 2960  df-int 4053
 Copyright terms: Public domain W3C validator