MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintrabg Structured version   Unicode version

Theorem elintrabg 4055
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elintrabg  |-  ( A  e.  V  ->  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    V( x)

Proof of Theorem elintrabg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2495 . 2  |-  ( y  =  A  ->  (
y  e.  |^| { x  e.  B  |  ph }  <->  A  e.  |^| { x  e.  B  |  ph }
) )
2 eleq1 2495 . . . 4  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
32imbi2d 308 . . 3  |-  ( y  =  A  ->  (
( ph  ->  y  e.  x )  <->  ( ph  ->  A  e.  x ) ) )
43ralbidv 2717 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  ( ph  ->  y  e.  x )  <->  A. x  e.  B  ( ph  ->  A  e.  x ) ) )
5 vex 2951 . . 3  |-  y  e. 
_V
65elintrab 4054 . 2  |-  ( y  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  y  e.  x
) )
71, 4, 6vtoclbg 3004 1  |-  ( A  e.  V  ->  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701   |^|cint 4042
This theorem is referenced by:  tskmid  8707  eltskm  8710  nobndlem6  25644  elpcliN  30627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rab 2706  df-v 2950  df-int 4043
  Copyright terms: Public domain W3C validator