Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioc1 Structured version   Unicode version

Theorem elioc1 10958
 Description: Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elioc1

Proof of Theorem elioc1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 10921 . 2
21elixx1 10925 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   w3a 936   wcel 1725   class class class wbr 4212  (class class class)co 6081  cxr 9119   clt 9120   cle 9121  cioc 10917 This theorem is referenced by:  ubioc1  10965  elioc2  10973  leordtvallem1  17274  pnfnei  17284  mnfnei  17285  xrge0tsms  18865  lhop1  19898  xrlimcnp  20807  iocinioc2  24142  xrge0tsmsd  24223  xrge0iifcnv  24319  lmxrge0  24337  rfcnpre4  27681 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-xr 9124  df-ioc 10921
 Copyright terms: Public domain W3C validator