MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooord Unicode version

Theorem eliooord 10710
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
eliooord  |-  ( A  e.  ( B (,) C )  ->  ( B  <  A  /\  A  <  C ) )

Proof of Theorem eliooord
StepHypRef Expression
1 eliooxr 10709 . . . 4  |-  ( A  e.  ( B (,) C )  ->  ( B  e.  RR*  /\  C  e.  RR* ) )
2 elioo2 10697 . . . 4  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( A  e.  ( B (,) C )  <->  ( A  e.  RR  /\  B  < 
A  /\  A  <  C ) ) )
31, 2syl 15 . . 3  |-  ( A  e.  ( B (,) C )  ->  ( A  e.  ( B (,) C )  <->  ( A  e.  RR  /\  B  < 
A  /\  A  <  C ) ) )
43ibi 232 . 2  |-  ( A  e.  ( B (,) C )  ->  ( A  e.  RR  /\  B  <  A  /\  A  < 
C ) )
5 3simpc 954 . 2  |-  ( ( A  e.  RR  /\  B  <  A  /\  A  <  C )  ->  ( B  <  A  /\  A  <  C ) )
64, 5syl 15 1  |-  ( A  e.  ( B (,) C )  ->  ( B  <  A  /\  A  <  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   RRcr 8736   RR*cxr 8866    < clt 8867   (,)cioo 10656
This theorem is referenced by:  elioo4g  10711  iccssioo2  10722  qdensere  18279  zcld  18319  reconnlem2  18332  xrge0tsms  18339  ovolioo  18925  ioorcl2  18927  itgsplitioo  19192  dvferm1lem  19331  dvferm2lem  19333  dvferm  19335  dvlt0  19352  dvivthlem1  19355  lhop1lem  19360  lhop1  19361  lhop2  19362  dvcvx  19367  ftc1lem4  19386  itgsubstlem  19395  itgsubst  19396  pilem2  19828  pilem3  19829  pigt2lt4  19830  tangtx  19873  tanabsge  19874  cosne0  19892  tanord  19900  tanregt0  19901  argimlt0  19967  logneg2  19969  divlogrlim  19982  logno1  19983  logcnlem3  19991  dvloglem  19995  logf1o2  19997  loglesqr  20098  asinsin  20188  acoscos  20189  atanlogaddlem  20209  atanlogsub  20212  atantan  20219  atanbndlem  20221  scvxcvx  20280  basellem8  20325  vmalogdivsum2  20687  vmalogdivsum  20688  2vmadivsumlem  20689  chpdifbndlem1  20702  selberg3lem1  20706  selberg3  20708  selberg4lem1  20709  selberg4  20710  selberg3r  20718  selberg4r  20719  selberg34r  20720  pntrlog2bndlem1  20726  pntrlog2bndlem2  20727  pntrlog2bndlem3  20728  pntrlog2bndlem4  20729  pntrlog2bndlem5  20730  pntrlog2bndlem6a  20731  pntrlog2bndlem6  20732  pntrlog2bnd  20733  pntpbnd1a  20734  pntpbnd1  20735  pntpbnd2  20736  pntpbnd  20737  pntibndlem2  20740  pntibndlem3  20741  pntibnd  20742  pntlemd  20743  pntlemb  20746  pntlemr  20751  pnt  20763  padicabv  20779  xrge0tsmsd  23382  dvreacos  24924  lvsovso  25626
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-ioo 10660
  Copyright terms: Public domain W3C validator