MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooord Unicode version

Theorem eliooord 10726
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
eliooord  |-  ( A  e.  ( B (,) C )  ->  ( B  <  A  /\  A  <  C ) )

Proof of Theorem eliooord
StepHypRef Expression
1 eliooxr 10725 . . . 4  |-  ( A  e.  ( B (,) C )  ->  ( B  e.  RR*  /\  C  e.  RR* ) )
2 elioo2 10713 . . . 4  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( A  e.  ( B (,) C )  <->  ( A  e.  RR  /\  B  < 
A  /\  A  <  C ) ) )
31, 2syl 15 . . 3  |-  ( A  e.  ( B (,) C )  ->  ( A  e.  ( B (,) C )  <->  ( A  e.  RR  /\  B  < 
A  /\  A  <  C ) ) )
43ibi 232 . 2  |-  ( A  e.  ( B (,) C )  ->  ( A  e.  RR  /\  B  <  A  /\  A  < 
C ) )
5 3simpc 954 . 2  |-  ( ( A  e.  RR  /\  B  <  A  /\  A  <  C )  ->  ( B  <  A  /\  A  <  C ) )
64, 5syl 15 1  |-  ( A  e.  ( B (,) C )  ->  ( B  <  A  /\  A  <  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696   class class class wbr 4039  (class class class)co 5874   RRcr 8752   RR*cxr 8882    < clt 8883   (,)cioo 10672
This theorem is referenced by:  elioo4g  10727  iccssioo2  10738  qdensere  18295  zcld  18335  reconnlem2  18348  xrge0tsms  18355  ovolioo  18941  ioorcl2  18943  itgsplitioo  19208  dvferm1lem  19347  dvferm2lem  19349  dvferm  19351  dvlt0  19368  dvivthlem1  19371  lhop1lem  19376  lhop1  19377  lhop2  19378  dvcvx  19383  ftc1lem4  19402  itgsubstlem  19411  itgsubst  19412  pilem2  19844  pilem3  19845  pigt2lt4  19846  tangtx  19889  tanabsge  19890  cosne0  19908  tanord  19916  tanregt0  19917  argimlt0  19983  logneg2  19985  divlogrlim  19998  logno1  19999  logcnlem3  20007  dvloglem  20011  logf1o2  20013  loglesqr  20114  asinsin  20204  acoscos  20205  atanlogaddlem  20225  atanlogsub  20228  atantan  20235  atanbndlem  20237  scvxcvx  20296  basellem8  20341  vmalogdivsum2  20703  vmalogdivsum  20704  2vmadivsumlem  20705  chpdifbndlem1  20718  selberg3lem1  20722  selberg3  20724  selberg4lem1  20725  selberg4  20726  selberg3r  20734  selberg4r  20735  selberg34r  20736  pntrlog2bndlem1  20742  pntrlog2bndlem2  20743  pntrlog2bndlem3  20744  pntrlog2bndlem4  20745  pntrlog2bndlem5  20746  pntrlog2bndlem6a  20747  pntrlog2bndlem6  20748  pntrlog2bnd  20749  pntpbnd1a  20750  pntpbnd1  20751  pntpbnd2  20752  pntpbnd  20753  pntibndlem2  20756  pntibndlem3  20757  pntibnd  20758  pntlemd  20759  pntlemb  20762  pntlemr  20767  pnt  20779  padicabv  20795  xrge0tsmsd  23397  itg2gt0cn  25006  ftc1cnnclem  25024  dvreacos  25027  lvsovso  25729
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-ioo 10676
  Copyright terms: Public domain W3C validator