MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixp Unicode version

Theorem elixp 6839
Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
Hypothesis
Ref Expression
elixp.1  |-  F  e. 
_V
Assertion
Ref Expression
elixp  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, F    x, A
Allowed substitution hint:    B( x)

Proof of Theorem elixp
StepHypRef Expression
1 elixp2 6836 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
2 elixp.1 . . 3  |-  F  e. 
_V
3 3anass 938 . . 3  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
42, 3mpbiran 884 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
51, 4bitri 240 1  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696   A.wral 2556   _Vcvv 2801    Fn wfn 5266   ` cfv 5271   X_cixp 6833
This theorem is referenced by:  elixpconst  6840  ixpin  6857  ixpiin  6858  resixpfo  6870  elixpsn  6871  boxriin  6874  boxcutc  6875  ixpfi2  7170  ixpiunwdom  7321  dfac9  7778  ac9  8126  ac9s  8136  konigthlem  8206  xpscf  13484  cofucl  13778  yonedalem3  14070  psrbaglefi  16134  ptpjpre1  17282  ptpjcn  17321  ptpjopn  17322  ptclsg  17325  dfac14  17328  pthaus  17348  xkopt  17365  ptcmplem2  17763  ptcmplem3  17764  ptcmplem4  17765  prdsbl  18053  prdsxmslem2  18091  ptpcon  23779  npincppr  25262  repcpwti  25264  cbicp  25269  inixp  26502  prdstotbnd  26621
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279  df-ixp 6834
  Copyright terms: Public domain W3C validator