MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixp2 Unicode version

Theorem elixp2 7033
Description: Membership in an infinite Cartesian product. See df-ixp 7031 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
elixp2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem elixp2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fneq1 5501 . . . . 5  |-  ( f  =  F  ->  (
f  Fn  A  <->  F  Fn  A ) )
2 fveq1 5694 . . . . . . 7  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
32eleq1d 2478 . . . . . 6  |-  ( f  =  F  ->  (
( f `  x
)  e.  B  <->  ( F `  x )  e.  B
) )
43ralbidv 2694 . . . . 5  |-  ( f  =  F  ->  ( A. x  e.  A  ( f `  x
)  e.  B  <->  A. x  e.  A  ( F `  x )  e.  B
) )
51, 4anbi12d 692 . . . 4  |-  ( f  =  F  ->  (
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B )  <-> 
( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
6 dfixp 7032 . . . 4  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) }
75, 6elab2g 3052 . . 3  |-  ( F  e.  _V  ->  ( F  e.  X_ x  e.  A  B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) ) )
87pm5.32i 619 . 2  |-  ( ( F  e.  _V  /\  F  e.  X_ x  e.  A  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
9 elex 2932 . . 3  |-  ( F  e.  X_ x  e.  A  B  ->  F  e.  _V )
109pm4.71ri 615 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  e.  X_ x  e.  A  B )
)
11 3anass 940 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
128, 10, 113bitr4i 269 1  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2674   _Vcvv 2924    Fn wfn 5416   ` cfv 5421   X_cixp 7030
This theorem is referenced by:  fvixp  7034  ixpfn  7035  elixp  7036  ixpf  7051  resixp  7064  undifixp  7065  mptelixpg  7066  prdsbasprj  13657  xpsfrnel  13751  isssc  13983  isfuncd  14025  funcres2b  14057  dprdw  15531  kelac1  27037
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fun 5423  df-fn 5424  df-fv 5429  df-ixp 7031
  Copyright terms: Public domain W3C validator