MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixpsn Structured version   Unicode version

Theorem elixpsn 7103
Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
elixpsn  |-  ( A  e.  V  ->  ( F  e.  X_ x  e. 
{ A } B  <->  E. y  e.  B  F  =  { <. A ,  y
>. } ) )
Distinct variable groups:    x, B, y    x, F, y    x, A, y    x, V, y

Proof of Theorem elixpsn
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3827 . . . 4  |-  ( z  =  A  ->  { z }  =  { A } )
21ixpeq1d 7076 . . 3  |-  ( z  =  A  ->  X_ x  e.  { z } B  =  X_ x  e.  { A } B )
32eleq2d 2505 . 2  |-  ( z  =  A  ->  ( F  e.  X_ x  e. 
{ z } B  <->  F  e.  X_ x  e.  { A } B ) )
4 opeq1 3986 . . . . 5  |-  ( z  =  A  ->  <. z ,  y >.  =  <. A ,  y >. )
54sneqd 3829 . . . 4  |-  ( z  =  A  ->  { <. z ,  y >. }  =  { <. A ,  y
>. } )
65eqeq2d 2449 . . 3  |-  ( z  =  A  ->  ( F  =  { <. z ,  y >. }  <->  F  =  { <. A ,  y
>. } ) )
76rexbidv 2728 . 2  |-  ( z  =  A  ->  ( E. y  e.  B  F  =  { <. z ,  y >. }  <->  E. y  e.  B  F  =  { <. A ,  y
>. } ) )
8 elex 2966 . . 3  |-  ( F  e.  X_ x  e.  {
z } B  ->  F  e.  _V )
9 snex 4407 . . . . 5  |-  { <. z ,  y >. }  e.  _V
10 eleq1 2498 . . . . 5  |-  ( F  =  { <. z ,  y >. }  ->  ( F  e.  _V  <->  { <. z ,  y >. }  e.  _V ) )
119, 10mpbiri 226 . . . 4  |-  ( F  =  { <. z ,  y >. }  ->  F  e.  _V )
1211rexlimivw 2828 . . 3  |-  ( E. y  e.  B  F  =  { <. z ,  y
>. }  ->  F  e.  _V )
13 eleq1 2498 . . . 4  |-  ( w  =  F  ->  (
w  e.  X_ x  e.  { z } B  <->  F  e.  X_ x  e.  {
z } B ) )
14 eqeq1 2444 . . . . 5  |-  ( w  =  F  ->  (
w  =  { <. z ,  y >. }  <->  F  =  { <. z ,  y
>. } ) )
1514rexbidv 2728 . . . 4  |-  ( w  =  F  ->  ( E. y  e.  B  w  =  { <. z ,  y >. }  <->  E. y  e.  B  F  =  { <. z ,  y
>. } ) )
16 vex 2961 . . . . . 6  |-  w  e. 
_V
1716elixp 7071 . . . . 5  |-  ( w  e.  X_ x  e.  {
z } B  <->  ( w  Fn  { z }  /\  A. x  e.  { z }  ( w `  x )  e.  B
) )
18 vex 2961 . . . . . . 7  |-  z  e. 
_V
19 fveq2 5730 . . . . . . . 8  |-  ( x  =  z  ->  (
w `  x )  =  ( w `  z ) )
2019eleq1d 2504 . . . . . . 7  |-  ( x  =  z  ->  (
( w `  x
)  e.  B  <->  ( w `  z )  e.  B
) )
2118, 20ralsn 3851 . . . . . 6  |-  ( A. x  e.  { z }  ( w `  x )  e.  B  <->  ( w `  z )  e.  B )
2221anbi2i 677 . . . . 5  |-  ( ( w  Fn  { z }  /\  A. x  e.  { z }  (
w `  x )  e.  B )  <->  ( w  Fn  { z }  /\  ( w `  z
)  e.  B ) )
23 simpl 445 . . . . . . . . 9  |-  ( ( w  Fn  { z }  /\  ( w `
 z )  e.  B )  ->  w  Fn  { z } )
24 fveq2 5730 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  (
w `  y )  =  ( w `  z ) )
2524eleq1d 2504 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
( w `  y
)  e.  B  <->  ( w `  z )  e.  B
) )
2618, 25ralsn 3851 . . . . . . . . . . 11  |-  ( A. y  e.  { z }  ( w `  y )  e.  B  <->  ( w `  z )  e.  B )
2726biimpri 199 . . . . . . . . . 10  |-  ( ( w `  z )  e.  B  ->  A. y  e.  { z }  (
w `  y )  e.  B )
2827adantl 454 . . . . . . . . 9  |-  ( ( w  Fn  { z }  /\  ( w `
 z )  e.  B )  ->  A. y  e.  { z }  (
w `  y )  e.  B )
29 ffnfv 5896 . . . . . . . . 9  |-  ( w : { z } --> B  <->  ( w  Fn 
{ z }  /\  A. y  e.  { z }  ( w `  y )  e.  B
) )
3023, 28, 29sylanbrc 647 . . . . . . . 8  |-  ( ( w  Fn  { z }  /\  ( w `
 z )  e.  B )  ->  w : { z } --> B )
3118fsn2 5910 . . . . . . . 8  |-  ( w : { z } --> B  <->  ( ( w `
 z )  e.  B  /\  w  =  { <. z ,  ( w `  z )
>. } ) )
3230, 31sylib 190 . . . . . . 7  |-  ( ( w  Fn  { z }  /\  ( w `
 z )  e.  B )  ->  (
( w `  z
)  e.  B  /\  w  =  { <. z ,  ( w `  z ) >. } ) )
33 opeq2 3987 . . . . . . . . . 10  |-  ( y  =  ( w `  z )  ->  <. z ,  y >.  =  <. z ,  ( w `  z ) >. )
3433sneqd 3829 . . . . . . . . 9  |-  ( y  =  ( w `  z )  ->  { <. z ,  y >. }  =  { <. z ,  ( w `  z )
>. } )
3534eqeq2d 2449 . . . . . . . 8  |-  ( y  =  ( w `  z )  ->  (
w  =  { <. z ,  y >. }  <->  w  =  { <. z ,  ( w `  z )
>. } ) )
3635rspcev 3054 . . . . . . 7  |-  ( ( ( w `  z
)  e.  B  /\  w  =  { <. z ,  ( w `  z ) >. } )  ->  E. y  e.  B  w  =  { <. z ,  y >. } )
3732, 36syl 16 . . . . . 6  |-  ( ( w  Fn  { z }  /\  ( w `
 z )  e.  B )  ->  E. y  e.  B  w  =  { <. z ,  y
>. } )
38 vex 2961 . . . . . . . . . . 11  |-  y  e. 
_V
3918, 38fvsn 5928 . . . . . . . . . 10  |-  ( {
<. z ,  y >. } `  z )  =  y
40 id 21 . . . . . . . . . 10  |-  ( y  e.  B  ->  y  e.  B )
4139, 40syl5eqel 2522 . . . . . . . . 9  |-  ( y  e.  B  ->  ( { <. z ,  y
>. } `  z )  e.  B )
4218, 38fnsn 5506 . . . . . . . . 9  |-  { <. z ,  y >. }  Fn  { z }
4341, 42jctil 525 . . . . . . . 8  |-  ( y  e.  B  ->  ( { <. z ,  y
>. }  Fn  { z }  /\  ( {
<. z ,  y >. } `  z )  e.  B ) )
44 fneq1 5536 . . . . . . . . 9  |-  ( w  =  { <. z ,  y >. }  ->  ( w  Fn  { z }  <->  { <. z ,  y
>. }  Fn  { z } ) )
45 fveq1 5729 . . . . . . . . . 10  |-  ( w  =  { <. z ,  y >. }  ->  ( w `  z )  =  ( { <. z ,  y >. } `  z ) )
4645eleq1d 2504 . . . . . . . . 9  |-  ( w  =  { <. z ,  y >. }  ->  ( ( w `  z
)  e.  B  <->  ( { <. z ,  y >. } `  z )  e.  B ) )
4744, 46anbi12d 693 . . . . . . . 8  |-  ( w  =  { <. z ,  y >. }  ->  ( ( w  Fn  {
z }  /\  (
w `  z )  e.  B )  <->  ( { <. z ,  y >. }  Fn  { z }  /\  ( { <. z ,  y >. } `  z )  e.  B
) ) )
4843, 47syl5ibrcom 215 . . . . . . 7  |-  ( y  e.  B  ->  (
w  =  { <. z ,  y >. }  ->  ( w  Fn  { z }  /\  ( w `
 z )  e.  B ) ) )
4948rexlimiv 2826 . . . . . 6  |-  ( E. y  e.  B  w  =  { <. z ,  y >. }  ->  ( w  Fn  { z }  /\  ( w `
 z )  e.  B ) )
5037, 49impbii 182 . . . . 5  |-  ( ( w  Fn  { z }  /\  ( w `
 z )  e.  B )  <->  E. y  e.  B  w  =  { <. z ,  y
>. } )
5117, 22, 503bitri 264 . . . 4  |-  ( w  e.  X_ x  e.  {
z } B  <->  E. y  e.  B  w  =  { <. z ,  y
>. } )
5213, 15, 51vtoclbg 3014 . . 3  |-  ( F  e.  _V  ->  ( F  e.  X_ x  e. 
{ z } B  <->  E. y  e.  B  F  =  { <. z ,  y
>. } ) )
538, 12, 52pm5.21nii 344 . 2  |-  ( F  e.  X_ x  e.  {
z } B  <->  E. y  e.  B  F  =  { <. z ,  y
>. } )
543, 7, 53vtoclbg 3014 1  |-  ( A  e.  V  ->  ( F  e.  X_ x  e. 
{ A } B  <->  E. y  e.  B  F  =  { <. A ,  y
>. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   _Vcvv 2958   {csn 3816   <.cop 3819    Fn wfn 5451   -->wf 5452   ` cfv 5456   X_cixp 7065
This theorem is referenced by:  ixpsnf1o  7104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ixp 7066
  Copyright terms: Public domain W3C validator