MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc2 Structured version   Unicode version

Theorem ellimc2 19756
Description: Write the definition of a limit directly in terms of open sets of the topology on the complexes. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f  |-  ( ph  ->  F : A --> CC )
limccl.a  |-  ( ph  ->  A  C_  CC )
limccl.b  |-  ( ph  ->  B  e.  CC )
ellimc2.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
ellimc2  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) ) )
Distinct variable groups:    w, u, A    u, B, w    ph, u, w    u, C, w    u, F, w    u, K, w

Proof of Theorem ellimc2
Dummy variables  z 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 19754 . . . 4  |-  ( F lim
CC  B )  C_  CC
21sseli 3336 . . 3  |-  ( C  e.  ( F lim CC  B )  ->  C  e.  CC )
32pm4.71ri 615 . 2  |-  ( C  e.  ( F lim CC  B )  <->  ( C  e.  CC  /\  C  e.  ( F lim CC  B
) ) )
4 eqid 2435 . . . . . 6  |-  ( Kt  ( A  u.  { B } ) )  =  ( Kt  ( A  u.  { B } ) )
5 ellimc2.k . . . . . 6  |-  K  =  ( TopOpen ` fld )
6 eqid 2435 . . . . . 6  |-  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  =  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
7 limccl.f . . . . . 6  |-  ( ph  ->  F : A --> CC )
8 limccl.a . . . . . 6  |-  ( ph  ->  A  C_  CC )
9 limccl.b . . . . . 6  |-  ( ph  ->  B  e.  CC )
104, 5, 6, 7, 8, 9ellimc 19752 . . . . 5  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) ) )
1110adantr 452 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( C  e.  ( F lim CC  B )  <->  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) ) )
125cnfldtopon 18809 . . . . . . 7  |-  K  e.  (TopOn `  CC )
139snssd 3935 . . . . . . . 8  |-  ( ph  ->  { B }  C_  CC )
148, 13unssd 3515 . . . . . . 7  |-  ( ph  ->  ( A  u.  { B } )  C_  CC )
15 resttopon 17217 . . . . . . 7  |-  ( ( K  e.  (TopOn `  CC )  /\  ( A  u.  { B } )  C_  CC )  ->  ( Kt  ( A  u.  { B }
) )  e.  (TopOn `  ( A  u.  { B } ) ) )
1612, 14, 15sylancr 645 . . . . . 6  |-  ( ph  ->  ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) ) )
1716adantr 452 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) ) )
1812a1i 11 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  K  e.  (TopOn `  CC )
)
19 ssun2 3503 . . . . . . 7  |-  { B }  C_  ( A  u.  { B } )
20 snssg 3924 . . . . . . . 8  |-  ( B  e.  CC  ->  ( B  e.  ( A  u.  { B } )  <->  { B }  C_  ( A  u.  { B } ) ) )
219, 20syl 16 . . . . . . 7  |-  ( ph  ->  ( B  e.  ( A  u.  { B } )  <->  { B }  C_  ( A  u.  { B } ) ) )
2219, 21mpbiri 225 . . . . . 6  |-  ( ph  ->  B  e.  ( A  u.  { B }
) )
2322adantr 452 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  B  e.  ( A  u.  { B } ) )
24 elun 3480 . . . . . . . 8  |-  ( z  e.  ( A  u.  { B } )  <->  ( z  e.  A  \/  z  e.  { B } ) )
25 elsn 3821 . . . . . . . . 9  |-  ( z  e.  { B }  <->  z  =  B )
2625orbi2i 506 . . . . . . . 8  |-  ( ( z  e.  A  \/  z  e.  { B } )  <->  ( z  e.  A  \/  z  =  B ) )
2724, 26bitri 241 . . . . . . 7  |-  ( z  e.  ( A  u.  { B } )  <->  ( z  e.  A  \/  z  =  B ) )
28 simpllr 736 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( z  e.  A  \/  z  =  B
) )  /\  z  =  B )  ->  C  e.  CC )
29 pm5.61 694 . . . . . . . . . 10  |-  ( ( ( z  e.  A  \/  z  =  B
)  /\  -.  z  =  B )  <->  ( z  e.  A  /\  -.  z  =  B ) )
307ffvelrnda 5862 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
3130ad2ant2r 728 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
z  e.  A  /\  -.  z  =  B
) )  ->  ( F `  z )  e.  CC )
3229, 31sylan2b 462 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
( z  e.  A  \/  z  =  B
)  /\  -.  z  =  B ) )  -> 
( F `  z
)  e.  CC )
3332anassrs 630 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( z  e.  A  \/  z  =  B
) )  /\  -.  z  =  B )  ->  ( F `  z
)  e.  CC )
3428, 33ifclda 3758 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
z  e.  A  \/  z  =  B )
)  ->  if (
z  =  B ,  C ,  ( F `  z ) )  e.  CC )
3527, 34sylan2b 462 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  z  e.  ( A  u.  { B } ) )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  e.  CC )
3635, 6fmptd 5885 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC )
37 iscnp 17293 . . . . . 6  |-  ( ( ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) )  /\  K  e.  (TopOn `  CC )  /\  B  e.  ( A  u.  { B } ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
)  <->  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC  /\  A. u  e.  K  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) ) ) )
3837baibd 876 . . . . 5  |-  ( ( ( ( Kt  ( A  u.  { B }
) )  e.  (TopOn `  ( A  u.  { B } ) )  /\  K  e.  (TopOn `  CC )  /\  B  e.  ( A  u.  { B } ) )  /\  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC )  ->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
)  <->  A. u  e.  K  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) ) ) )
3917, 18, 23, 36, 38syl31anc 1187 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
)  <->  A. u  e.  K  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) ) ) )
40 iftrue 3737 . . . . . . . . . . 11  |-  ( z  =  B  ->  if ( z  =  B ,  C ,  ( F `  z ) )  =  C )
4140, 6fvmptg 5796 . . . . . . . . . 10  |-  ( ( B  e.  ( A  u.  { B }
)  /\  C  e.  CC )  ->  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  =  C )
4222, 41sylan 458 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  =  C )
4342eleq1d 2501 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  <->  C  e.  u
) )
4443imbi1d 309 . . . . . . 7  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
)  <->  ( C  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) ) )
4544adantr 452 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K )  ->  (
( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) )  <->  ( C  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) ) )
465cnfldtop 18810 . . . . . . . . . . 11  |-  K  e. 
Top
47 cnex 9063 . . . . . . . . . . . . . 14  |-  CC  e.  _V
4847ssex 4339 . . . . . . . . . . . . 13  |-  ( ( A  u.  { B } )  C_  CC  ->  ( A  u.  { B } )  e.  _V )
4914, 48syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  u.  { B } )  e.  _V )
5049ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( A  u.  { B } )  e.  _V )
51 restval 13646 . . . . . . . . . . 11  |-  ( ( K  e.  Top  /\  ( A  u.  { B } )  e.  _V )  ->  ( Kt  ( A  u.  { B }
) )  =  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) )
5246, 50, 51sylancr 645 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( Kt  ( A  u.  { B } ) )  =  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) )
5352rexeqdv 2903 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. v  e.  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) )
54 vex 2951 . . . . . . . . . . . 12  |-  w  e. 
_V
5554inex1 4336 . . . . . . . . . . 11  |-  ( w  i^i  ( A  u.  { B } ) )  e.  _V
5655rgenw 2765 . . . . . . . . . 10  |-  A. w  e.  K  ( w  i^i  ( A  u.  { B } ) )  e. 
_V
57 eqid 2435 . . . . . . . . . . 11  |-  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) )  =  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) )
58 eleq2 2496 . . . . . . . . . . . 12  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( B  e.  v  <-> 
B  e.  ( w  i^i  ( A  u.  { B } ) ) ) )
59 imaeq2 5191 . . . . . . . . . . . . 13  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  =  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) )
6059sseq1d 3367 . . . . . . . . . . . 12  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u  <->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u ) )
6158, 60anbi12d 692 . . . . . . . . . . 11  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u ) ) )
6257, 61rexrnmpt 5871 . . . . . . . . . 10  |-  ( A. w  e.  K  (
w  i^i  ( A  u.  { B } ) )  e.  _V  ->  ( E. v  e.  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )  <->  E. w  e.  K  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " (
w  i^i  ( A  u.  { B } ) ) )  C_  u
) ) )
6356, 62mp1i 12 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. v  e.  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. w  e.  K  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u ) ) )
6422ad3antrrr 711 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  B  e.  ( A  u.  { B } ) )
65 elin 3522 . . . . . . . . . . . . 13  |-  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  <->  ( B  e.  w  /\  B  e.  ( A  u.  { B } ) ) )
6665rbaib 874 . . . . . . . . . . . 12  |-  ( B  e.  ( A  u.  { B } )  -> 
( B  e.  ( w  i^i  ( A  u.  { B }
) )  <->  B  e.  w ) )
6764, 66syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  <->  B  e.  w ) )
68 simpllr 736 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  C  e.  CC )
69 fvex 5734 . . . . . . . . . . . . . . . . 17  |-  ( F `
 z )  e. 
_V
70 ifexg 3790 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  CC  /\  ( F `  z )  e.  _V )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V )
7168, 69, 70sylancl 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V )
7271ralrimivw 2782 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V )
73 eqid 2435 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  =  ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )
7473fnmpt 5563 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V  ->  ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  Fn  ( w  i^i  ( A  u.  { B } ) ) )
7573fmpt 5882 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( w  i^i  ( A  u.  { B }
) ) --> u )
76 df-f 5450 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) ) : ( w  i^i  ( A  u.  { B } ) ) --> u  <-> 
( ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  Fn  (
w  i^i  ( A  u.  { B } ) )  /\  ran  (
z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  C_  u ) )
7775, 76bitri 241 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( (
z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  Fn  ( w  i^i  ( A  u.  { B } ) )  /\  ran  ( z  e.  ( w  i^i  ( A  u.  { B }
) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) 
C_  u ) )
7877baib 872 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  Fn  ( w  i^i  ( A  u.  { B } ) )  -> 
( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  C_  u
) )
7972, 74, 783syl 19 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( A. z  e.  (
w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  C_  u
) )
80 simplrr 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  C  e.  u )
81 inss2 3554 . . . . . . . . . . . . . . . . . . 19  |-  ( w  i^i  { B }
)  C_  { B }
8281sseli 3336 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( w  i^i 
{ B } )  ->  z  e.  { B } )
8325, 40sylbi 188 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  { B }  ->  if ( z  =  B ,  C , 
( F `  z
) )  =  C )
8483eleq1d 2501 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  { B }  ->  ( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  C  e.  u
) )
8582, 84syl 16 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( w  i^i 
{ B } )  ->  ( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  C  e.  u
) )
8680, 85syl5ibrcom 214 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
z  e.  ( w  i^i  { B }
)  ->  if (
z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
8786ralrimiv 2780 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  A. z  e.  ( w  i^i  { B } ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u )
88 undif1 3695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  \  { B } )  u.  { B } )  =  ( A  u.  { B } )
8988ineq2i 3531 . . . . . . . . . . . . . . . . . . 19  |-  ( w  i^i  ( ( A 
\  { B }
)  u.  { B } ) )  =  ( w  i^i  ( A  u.  { B } ) )
90 indi 3579 . . . . . . . . . . . . . . . . . . 19  |-  ( w  i^i  ( ( A 
\  { B }
)  u.  { B } ) )  =  ( ( w  i^i  ( A  \  { B } ) )  u.  ( w  i^i  { B } ) )
9189, 90eqtr3i 2457 . . . . . . . . . . . . . . . . . 18  |-  ( w  i^i  ( A  u.  { B } ) )  =  ( ( w  i^i  ( A  \  { B } ) )  u.  ( w  i^i 
{ B } ) )
9291raleqi 2900 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( ( w  i^i  ( A  \  { B } ) )  u.  ( w  i^i  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u )
93 ralunb 3520 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  ( (
w  i^i  ( A  \  { B } ) )  u.  ( w  i^i  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( A. z  e.  ( w  i^i  ( A  \  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  /\  A. z  e.  ( w  i^i  { B } ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9492, 93bitri 241 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( A. z  e.  ( w  i^i  ( A  \  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  /\  A. z  e.  ( w  i^i  { B }
) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9594rbaib 874 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  ( w  i^i  { B } ) if ( z  =  B ,  C , 
( F `  z
) )  e.  u  ->  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9687, 95syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( A. z  e.  (
w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( w  i^i  ( A 
\  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9779, 96bitr3d 247 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( ran  ( z  e.  ( w  i^i  ( A  u.  { B }
) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) 
C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
98 inss2 3554 . . . . . . . . . . . . . . . 16  |-  ( w  i^i  ( A  \  { B } ) ) 
C_  ( A  \  { B } )
9998sseli 3336 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( w  i^i  ( A  \  { B } ) )  -> 
z  e.  ( A 
\  { B }
) )
100 eldifsni 3920 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( A  \  { B } )  -> 
z  =/=  B )
101 ifnefalse 3739 . . . . . . . . . . . . . . . . 17  |-  ( z  =/=  B  ->  if ( z  =  B ,  C ,  ( F `  z ) )  =  ( F `
 z ) )
102100, 101syl 16 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( A  \  { B } )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  =  ( F `
 z ) )
103102eleq1d 2501 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( A  \  { B } )  -> 
( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( F `  z )  e.  u
) )
10499, 103syl 16 . . . . . . . . . . . . . 14  |-  ( z  e.  ( w  i^i  ( A  \  { B } ) )  -> 
( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( F `  z )  e.  u
) )
105104ralbiia 2729 . . . . . . . . . . . . 13  |-  ( A. z  e.  ( w  i^i  ( A  \  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) ( F `
 z )  e.  u )
10697, 105syl6bb 253 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( ran  ( z  e.  ( w  i^i  ( A  u.  { B }
) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) 
C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) ( F `
 z )  e.  u ) )
107 df-ima 4883 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) )  =  ran  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )
108 inss2 3554 . . . . . . . . . . . . . . . 16  |-  ( w  i^i  ( A  u.  { B } ) ) 
C_  ( A  u.  { B } )
109 resmpt 5183 . . . . . . . . . . . . . . . 16  |-  ( ( w  i^i  ( A  u.  { B }
) )  C_  ( A  u.  { B } )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )  =  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
110108, 109mp1i 12 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )  =  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
111110rneqd 5089 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ran  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )  =  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
112107, 111syl5eq 2479 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) )  =  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
113112sseq1d 3367 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u  <->  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  C_  u
) )
1147ad3antrrr 711 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  F : A --> CC )
115 ffun 5585 . . . . . . . . . . . . . 14  |-  ( F : A --> CC  ->  Fun 
F )
116114, 115syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  Fun  F )
117 difss 3466 . . . . . . . . . . . . . . 15  |-  ( A 
\  { B }
)  C_  A
11898, 117sstri 3349 . . . . . . . . . . . . . 14  |-  ( w  i^i  ( A  \  { B } ) ) 
C_  A
119 fdm 5587 . . . . . . . . . . . . . . 15  |-  ( F : A --> CC  ->  dom 
F  =  A )
120114, 119syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  dom  F  =  A )
121118, 120syl5sseqr 3389 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
w  i^i  ( A  \  { B } ) )  C_  dom  F )
122 funimass4 5769 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  (
w  i^i  ( A  \  { B } ) )  C_  dom  F )  ->  ( ( F
" ( w  i^i  ( A  \  { B } ) ) ) 
C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) ( F `
 z )  e.  u ) )
123116, 121, 122syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B } ) ) ( F `  z
)  e.  u ) )
124106, 113, 1233bitr4d 277 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u  <->  ( F " ( w  i^i  ( A  \  { B }
) ) )  C_  u ) )
12567, 124anbi12d 692 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( B  e.  ( w  i^i  ( A  u.  { B }
) )  /\  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u )  <->  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
126125rexbidva 2714 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. w  e.  K  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u )  <->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
12753, 63, 1263bitrd 271 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
128127anassrs 630 . . . . . . 7  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K
)  /\  C  e.  u )  ->  ( E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
129128pm5.74da 669 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K )  ->  (
( C  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) )  <->  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
13045, 129bitrd 245 . . . . 5  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K )  ->  (
( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) )  <->  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
131130ralbidva 2713 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. u  e.  K  (
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
)  <->  A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) )
13211, 39, 1313bitrd 271 . . 3  |-  ( (
ph  /\  C  e.  CC )  ->  ( C  e.  ( F lim CC  B )  <->  A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
133132pm5.32da 623 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  C  e.  ( F lim CC  B
) )  <->  ( C  e.  CC  /\  A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) ) )
1343, 133syl5bb 249 1  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948    \ cdif 3309    u. cun 3310    i^i cin 3311    C_ wss 3312   ifcif 3731   {csn 3806    e. cmpt 4258   dom cdm 4870   ran crn 4871    |` cres 4872   "cima 4873   Fun wfun 5440    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   ↾t crest 13640   TopOpenctopn 13641  ℂfldccnfld 16695   Topctop 16950  TopOnctopon 16951    CnP ccnp 17281   lim CC climc 19741
This theorem is referenced by:  limcnlp  19757  ellimc3  19758  limcflf  19760  limcresi  19764  limciun  19773  lhop1lem  19889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-fz 11036  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-plusg 13534  df-mulr 13535  df-starv 13536  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-rest 13642  df-topn 13643  df-topgen 13659  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cnp 17284  df-xms 18342  df-ms 18343  df-limc 19745
  Copyright terms: Public domain W3C validator