Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellines Unicode version

Theorem ellines 24847
Description: Membership in the set of all lines. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
ellines  |-  ( A  e. LinesEE 
<->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  A  =  ( pLine q ) ) )
Distinct variable group:    A, n, p, q

Proof of Theorem ellines
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2809 . 2  |-  ( A  e. LinesEE  ->  A  e.  _V )
2 ovex 5899 . . . . . . 7  |-  ( pLine q )  e.  _V
3 eleq1 2356 . . . . . . 7  |-  ( A  =  ( pLine q
)  ->  ( A  e.  _V  <->  ( pLine q
)  e.  _V )
)
42, 3mpbiri 224 . . . . . 6  |-  ( A  =  ( pLine q
)  ->  A  e.  _V )
54adantl 452 . . . . 5  |-  ( ( p  =/=  q  /\  A  =  ( pLine q ) )  ->  A  e.  _V )
65rexlimivw 2676 . . . 4  |-  ( E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  A  =  ( pLine q ) )  ->  A  e.  _V )
76a1i 10 . . 3  |-  ( ( n  e.  NN  /\  p  e.  ( EE `  n ) )  -> 
( E. q  e.  ( EE `  n
) ( p  =/=  q  /\  A  =  ( pLine q ) )  ->  A  e.  _V ) )
87rexlimivv 2685 . 2  |-  ( E. n  e.  NN  E. p  e.  ( EE `  n ) E. q  e.  ( EE `  n
) ( p  =/=  q  /\  A  =  ( pLine q ) )  ->  A  e.  _V )
9 eleq1 2356 . . 3  |-  ( x  =  A  ->  (
x  e. LinesEE  <->  A  e. LinesEE ) )
10 eqeq1 2302 . . . . . 6  |-  ( x  =  A  ->  (
x  =  ( pLine q )  <->  A  =  ( pLine q ) ) )
1110anbi2d 684 . . . . 5  |-  ( x  =  A  ->  (
( p  =/=  q  /\  x  =  (
pLine q ) )  <-> 
( p  =/=  q  /\  A  =  (
pLine q ) ) ) )
1211rexbidv 2577 . . . 4  |-  ( x  =  A  ->  ( E. q  e.  ( EE `  n ) ( p  =/=  q  /\  x  =  ( pLine q ) )  <->  E. q  e.  ( EE `  n
) ( p  =/=  q  /\  A  =  ( pLine q ) ) ) )
13122rexbidv 2599 . . 3  |-  ( x  =  A  ->  ( E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  x  =  ( pLine q ) )  <->  E. n  e.  NN  E. p  e.  ( EE `  n
) E. q  e.  ( EE `  n
) ( p  =/=  q  /\  A  =  ( pLine q ) ) ) )
14 df-lines2 24834 . . . . . 6  |- LinesEE  =  ran Line
15 df-line2 24832 . . . . . . 7  |- Line  =  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }
1615rneqi 4921 . . . . . 6  |-  ran Line  =  ran  {
<. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }
17 rnoprab 5946 . . . . . 6  |-  ran  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }  =  { x  |  E. p E. q E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }
1814, 16, 173eqtri 2320 . . . . 5  |- LinesEE  =  {
x  |  E. p E. q E. n  e.  NN  ( ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n
)  /\  p  =/=  q )  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }
1918eleq2i 2360 . . . 4  |-  ( x  e. LinesEE 
<->  x  e.  { x  |  E. p E. q E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) } )
20 abid 2284 . . . . 5  |-  ( x  e.  { x  |  E. p E. q E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }  <->  E. p E. q E. n  e.  NN  (
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) )
21 df-rex 2562 . . . . . . 7  |-  ( E. n  e.  NN  (
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  )  <->  E. n
( n  e.  NN  /\  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) ) )
22212exbii 1573 . . . . . 6  |-  ( E. p E. q E. n  e.  NN  (
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  )  <->  E. p E. q E. n ( n  e.  NN  /\  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) ) )
23 exrot3 1830 . . . . . . 7  |-  ( E. n E. p E. q ( q  e.  ( EE `  n
)  /\  ( (
n  e.  NN  /\  p  e.  ( EE `  n ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) ) )  <->  E. p E. q E. n ( q  e.  ( EE
`  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) ) )
24 r2ex 2594 . . . . . . . 8  |-  ( E. n  e.  NN  E. p  e.  ( EE `  n ) E. q  e.  ( EE `  n
) ( p  =/=  q  /\  x  =  ( pLine q ) )  <->  E. n E. p
( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  E. q  e.  ( EE `  n ) ( p  =/=  q  /\  x  =  ( pLine q
) ) ) )
25 r19.42v 2707 . . . . . . . . . 10  |-  ( E. q  e.  ( EE
`  n ) ( ( n  e.  NN  /\  p  e.  ( EE
`  n ) )  /\  ( p  =/=  q  /\  x  =  ( pLine q ) ) )  <->  ( (
n  e.  NN  /\  p  e.  ( EE `  n ) )  /\  E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  x  =  ( pLine q ) ) ) )
26 df-rex 2562 . . . . . . . . . 10  |-  ( E. q  e.  ( EE
`  n ) ( ( n  e.  NN  /\  p  e.  ( EE
`  n ) )  /\  ( p  =/=  q  /\  x  =  ( pLine q ) ) )  <->  E. q
( q  e.  ( EE `  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) ) )
2725, 26bitr3i 242 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\  p  e.  ( EE
`  n ) )  /\  E. q  e.  ( EE `  n
) ( p  =/=  q  /\  x  =  ( pLine q ) ) )  <->  E. q
( q  e.  ( EE `  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) ) )
28272exbii 1573 . . . . . . . 8  |-  ( E. n E. p ( ( n  e.  NN  /\  p  e.  ( EE
`  n ) )  /\  E. q  e.  ( EE `  n
) ( p  =/=  q  /\  x  =  ( pLine q ) ) )  <->  E. n E. p E. q ( q  e.  ( EE
`  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) ) )
2924, 28bitri 240 . . . . . . 7  |-  ( E. n  e.  NN  E. p  e.  ( EE `  n ) E. q  e.  ( EE `  n
) ( p  =/=  q  /\  x  =  ( pLine q ) )  <->  E. n E. p E. q ( q  e.  ( EE `  n
)  /\  ( (
n  e.  NN  /\  p  e.  ( EE `  n ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) ) ) )
30 anass 630 . . . . . . . . . 10  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) )  <->  ( q  e.  ( EE `  n
)  /\  ( (
n  e.  NN  /\  p  e.  ( EE `  n ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) ) ) )
31 anass 630 . . . . . . . . . . 11  |-  ( ( ( ( q  e.  ( EE `  n
)  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  /\  x  =  ( pLine q ) )  <->  ( (
q  e.  ( EE
`  n )  /\  ( n  e.  NN  /\  p  e.  ( EE
`  n ) ) )  /\  ( p  =/=  q  /\  x  =  ( pLine q
) ) ) )
32 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  ->  n  e.  NN )
33 simplrr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  ->  p  e.  ( EE `  n ) )
34 simpll 730 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  -> 
q  e.  ( EE
`  n ) )
35 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  ->  p  =/=  q )
3633, 34, 353jca 1132 . . . . . . . . . . . . . 14  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  -> 
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
) )
3732, 36jca 518 . . . . . . . . . . . . 13  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  -> 
( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
) ) )
38 simpr2 962 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
q  e.  ( EE
`  n ) )
39 simpl 443 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  ->  n  e.  NN )
40 simpr1 961 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  ->  p  e.  ( EE `  n ) )
4138, 39, 40jca32 521 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) ) )
42 simpr3 963 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  ->  p  =/=  q )
4341, 42jca 518 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
( ( q  e.  ( EE `  n
)  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q ) )
4437, 43impbii 180 . . . . . . . . . . . 12  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  <->  ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n
)  /\  p  =/=  q ) ) )
4544anbi1i 676 . . . . . . . . . . 11  |-  ( ( ( ( q  e.  ( EE `  n
)  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  /\  x  =  ( pLine q ) )  <->  ( (
n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  /\  x  =  ( pLine q ) ) )
4631, 45bitr3i 242 . . . . . . . . . 10  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) )  <->  ( ( n  e.  NN  /\  (
p  e.  ( EE
`  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  /\  x  =  ( pLine q ) ) )
4730, 46bitr3i 242 . . . . . . . . 9  |-  ( ( q  e.  ( EE
`  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) )  <->  ( ( n  e.  NN  /\  (
p  e.  ( EE
`  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  /\  x  =  ( pLine q ) ) )
48 fvline 24839 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
( pLine q )  =  { x  |  x  Colinear  <. p ,  q
>. } )
49 opex 4253 . . . . . . . . . . . . . 14  |-  <. p ,  q >.  e.  _V
50 dfec2 6679 . . . . . . . . . . . . . 14  |-  ( <.
p ,  q >.  e.  _V  ->  [ <. p ,  q >. ] `'  Colinear  =  { x  |  <. p ,  q >. `'  Colinear  x } )
5149, 50ax-mp 8 . . . . . . . . . . . . 13  |-  [ <. p ,  q >. ] `'  Colinear  =  { x  |  <. p ,  q >. `'  Colinear  x }
52 vex 2804 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
5349, 52brcnv 4880 . . . . . . . . . . . . . 14  |-  ( <.
p ,  q >. `' 
Colinear  x  <->  x  Colinear  <. p ,  q >. )
5453abbii 2408 . . . . . . . . . . . . 13  |-  { x  |  <. p ,  q
>. `' 
Colinear  x }  =  {
x  |  x  Colinear  <. p ,  q >. }
5551, 54eqtri 2316 . . . . . . . . . . . 12  |-  [ <. p ,  q >. ] `'  Colinear  =  { x  |  x 
Colinear 
<. p ,  q >. }
5648, 55syl6eqr 2346 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
( pLine q )  =  [ <. p ,  q >. ] `'  Colinear  )
5756eqeq2d 2307 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
( x  =  ( pLine q )  <->  x  =  [ <. p ,  q
>. ] `'  Colinear  ) )
5857pm5.32i 618 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
) )  /\  x  =  ( pLine q
) )  <->  ( (
n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  /\  x  =  [ <. p ,  q >. ] `'  Colinear  ) )
59 anass 630 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
) )  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  )  <->  ( n  e.  NN  /\  ( ( p  e.  ( EE
`  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q )  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) ) )
6047, 58, 593bitrri 263 . . . . . . . 8  |-  ( ( n  e.  NN  /\  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) )  <-> 
( q  e.  ( EE `  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) ) )
61603exbii 1574 . . . . . . 7  |-  ( E. p E. q E. n ( n  e.  NN  /\  ( ( p  e.  ( EE
`  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q )  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) )  <->  E. p E. q E. n ( q  e.  ( EE `  n
)  /\  ( (
n  e.  NN  /\  p  e.  ( EE `  n ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) ) ) )
6223, 29, 613bitr4ri 269 . . . . . 6  |-  ( E. p E. q E. n ( n  e.  NN  /\  ( ( p  e.  ( EE
`  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q )  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) )  <->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  x  =  ( pLine q ) ) )
6322, 62bitri 240 . . . . 5  |-  ( E. p E. q E. n  e.  NN  (
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  )  <->  E. n  e.  NN  E. p  e.  ( EE `  n
) E. q  e.  ( EE `  n
) ( p  =/=  q  /\  x  =  ( pLine q ) ) )
6420, 63bitri 240 . . . 4  |-  ( x  e.  { x  |  E. p E. q E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }  <->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  x  =  ( pLine q ) ) )
6519, 64bitri 240 . . 3  |-  ( x  e. LinesEE 
<->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  x  =  ( pLine q ) ) )
669, 13, 65vtoclbg 2857 . 2  |-  ( A  e.  _V  ->  ( A  e. LinesEE  <->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  A  =  ( pLine q ) ) ) )
671, 8, 66pm5.21nii 342 1  |-  ( A  e. LinesEE 
<->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  A  =  ( pLine q ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   E.wrex 2557   _Vcvv 2801   <.cop 3656   class class class wbr 4039   `'ccnv 4704   ran crn 4706   ` cfv 5271  (class class class)co 5874   {coprab 5875   [cec 6674   NNcn 9762   EEcee 24588    Colinear ccolin 24732  Linecline2 24829  LinesEEclines2 24831
This theorem is referenced by:  linethru  24848  hilbert1.1  24849
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-i2m1 8821  ax-1ne0 8822  ax-rrecex 8825  ax-cnre 8826
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-recs 6404  df-rdg 6439  df-ec 6678  df-nn 9763  df-colinear 24736  df-line2 24832  df-lines2 24834
  Copyright terms: Public domain W3C validator