MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmopn2 Structured version   Unicode version

Theorem elmopn2 18467
Description: A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
elmopn2  |-  ( D  e.  ( * Met `  X )  ->  ( A  e.  J  <->  ( A  C_  X  /\  A. x  e.  A  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  A
) ) )
Distinct variable groups:    x, y, A    x, D, y    x, X, y
Allowed substitution hints:    J( x, y)

Proof of Theorem elmopn2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mopnval.1 . . 3  |-  J  =  ( MetOpen `  D )
21elmopn 18464 . 2  |-  ( D  e.  ( * Met `  X )  ->  ( A  e.  J  <->  ( A  C_  X  /\  A. x  e.  A  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  A ) ) ) )
3 ssel2 3335 . . . . . 6  |-  ( ( A  C_  X  /\  x  e.  A )  ->  x  e.  X )
4 blssex 18449 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  X
)  ->  ( E. z  e.  ran  ( ball `  D ) ( x  e.  z  /\  z  C_  A )  <->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  A
) )
53, 4sylan2 461 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  ( A  C_  X  /\  x  e.  A
) )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  A
)  <->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  A ) )
65anassrs 630 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  A  C_  X
)  /\  x  e.  A )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  A
)  <->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  A ) )
76ralbidva 2713 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  A  C_  X
)  ->  ( A. x  e.  A  E. z  e.  ran  ( ball `  D ) ( x  e.  z  /\  z  C_  A )  <->  A. x  e.  A  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  A
) )
87pm5.32da 623 . 2  |-  ( D  e.  ( * Met `  X )  ->  (
( A  C_  X  /\  A. x  e.  A  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  A
) )  <->  ( A  C_  X  /\  A. x  e.  A  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  A
) ) )
92, 8bitrd 245 1  |-  ( D  e.  ( * Met `  X )  ->  ( A  e.  J  <->  ( A  C_  X  /\  A. x  e.  A  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   ran crn 4871   ` cfv 5446  (class class class)co 6073   RR+crp 10604   * Metcxmt 16678   ballcbl 16680   MetOpencmopn 16683
This theorem is referenced by:  metrest  18546  tgioo  18819  xrsmopn  18835  recld2  18837  tpr2rico  24302  dya2icoseg2  24620  opnrebl  26314  opnrebl2  26315
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-topgen 13659  df-psmet 16686  df-xmet 16687  df-bl 16689  df-mopn 16690  df-bases 16957
  Copyright terms: Public domain W3C validator