MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmptrab Unicode version

Theorem elmptrab 17538
Description: Membership in a one-parameter class of sets. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Hypotheses
Ref Expression
elmptrab.f  |-  F  =  ( x  e.  D  |->  { y  e.  B  |  ph } )
elmptrab.s1  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps )
)
elmptrab.s2  |-  ( x  =  X  ->  B  =  C )
elmptrab.ex  |-  ( x  e.  D  ->  B  e.  V )
Assertion
Ref Expression
elmptrab  |-  ( Y  e.  ( F `  X )  <->  ( X  e.  D  /\  Y  e.  C  /\  ps )
)
Distinct variable groups:    x, y, X    y, B    x, C, y    x, D    x, V, y    x, Y, y    ps, x, y
Allowed substitution hints:    ph( x, y)    B( x)    D( y)    F( x, y)

Proof of Theorem elmptrab
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmptrab.f . . . 4  |-  F  =  ( x  e.  D  |->  { y  e.  B  |  ph } )
21dmmptss 5185 . . 3  |-  dom  F  C_  D
3 elfvdm 5570 . . 3  |-  ( Y  e.  ( F `  X )  ->  X  e.  dom  F )
42, 3sseldi 3191 . 2  |-  ( Y  e.  ( F `  X )  ->  X  e.  D )
5 simp1 955 . 2  |-  ( ( X  e.  D  /\  Y  e.  C  /\  ps )  ->  X  e.  D )
6 csbeq1 3097 . . . . . 6  |-  ( z  =  X  ->  [_ z  /  x ]_ B  = 
[_ X  /  x ]_ B )
7 dfsbcq 3006 . . . . . 6  |-  ( z  =  X  ->  ( [. z  /  x ]. [. w  /  y ]. ph  <->  [. X  /  x ]. [. w  /  y ]. ph ) )
86, 7rabeqbidv 2796 . . . . 5  |-  ( z  =  X  ->  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }  =  { w  e.  [_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph } )
9 nfcv 2432 . . . . . . 7  |-  F/_ z { y  e.  B  |  ph }
10 nfsbc1v 3023 . . . . . . . 8  |-  F/ x [. z  /  x ]. [. w  /  y ]. ph
11 nfcsb1v 3126 . . . . . . . 8  |-  F/_ x [_ z  /  x ]_ B
1210, 11nfrab 2734 . . . . . . 7  |-  F/_ x { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }
13 csbeq1a 3102 . . . . . . . . 9  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
14 sbceq1a 3014 . . . . . . . . 9  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
1513, 14rabeqbidv 2796 . . . . . . . 8  |-  ( x  =  z  ->  { y  e.  B  |  ph }  =  { y  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. ph }
)
16 nfcv 2432 . . . . . . . . 9  |-  F/_ w [_ z  /  x ]_ B
17 nfcv 2432 . . . . . . . . 9  |-  F/_ y [_ z  /  x ]_ B
18 nfcv 2432 . . . . . . . . . 10  |-  F/_ y
z
19 nfsbc1v 3023 . . . . . . . . . 10  |-  F/ y
[. w  /  y ]. ph
2018, 19nfsbc 3025 . . . . . . . . 9  |-  F/ y
[. z  /  x ]. [. w  /  y ]. ph
21 nfv 1609 . . . . . . . . 9  |-  F/ w [. z  /  x ]. ph
22 sbceq1a 3014 . . . . . . . . . . 11  |-  ( y  =  w  ->  ( [. z  /  x ]. ph  <->  [. w  /  y ]. [. z  /  x ]. ph ) )
2322equcoms 1666 . . . . . . . . . 10  |-  ( w  =  y  ->  ( [. z  /  x ]. ph  <->  [. w  /  y ]. [. z  /  x ]. ph ) )
24 sbccom 3075 . . . . . . . . . 10  |-  ( [. z  /  x ]. [. w  /  y ]. ph  <->  [. w  / 
y ]. [. z  /  x ]. ph )
2523, 24syl6rbbr 255 . . . . . . . . 9  |-  ( w  =  y  ->  ( [. z  /  x ]. [. w  /  y ]. ph  <->  [. z  /  x ]. ph ) )
2616, 17, 20, 21, 25cbvrab 2799 . . . . . . . 8  |-  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }  =  { y  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. ph }
2715, 26syl6eqr 2346 . . . . . . 7  |-  ( x  =  z  ->  { y  e.  B  |  ph }  =  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }
)
289, 12, 27cbvmpt 4126 . . . . . 6  |-  ( x  e.  D  |->  { y  e.  B  |  ph } )  =  ( z  e.  D  |->  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph } )
291, 28eqtri 2316 . . . . 5  |-  F  =  ( z  e.  D  |->  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph } )
30 nfv 1609 . . . . . . . 8  |-  F/ x  z  e.  D
3111nfel1 2442 . . . . . . . 8  |-  F/ x [_ z  /  x ]_ B  e.  V
3230, 31nfim 1781 . . . . . . 7  |-  F/ x
( z  e.  D  ->  [_ z  /  x ]_ B  e.  V
)
33 eleq1 2356 . . . . . . . 8  |-  ( x  =  z  ->  (
x  e.  D  <->  z  e.  D ) )
3413eleq1d 2362 . . . . . . . 8  |-  ( x  =  z  ->  ( B  e.  V  <->  [_ z  /  x ]_ B  e.  V
) )
3533, 34imbi12d 311 . . . . . . 7  |-  ( x  =  z  ->  (
( x  e.  D  ->  B  e.  V )  <-> 
( z  e.  D  ->  [_ z  /  x ]_ B  e.  V
) ) )
36 elmptrab.ex . . . . . . 7  |-  ( x  e.  D  ->  B  e.  V )
3732, 35, 36chvar 1939 . . . . . 6  |-  ( z  e.  D  ->  [_ z  /  x ]_ B  e.  V )
38 rabexg 4180 . . . . . 6  |-  ( [_ z  /  x ]_ B  e.  V  ->  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }  e.  _V )
3937, 38syl 15 . . . . 5  |-  ( z  e.  D  ->  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }  e.  _V )
408, 29, 39fvmpt3 5620 . . . 4  |-  ( X  e.  D  ->  ( F `  X )  =  { w  e.  [_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph } )
4140eleq2d 2363 . . 3  |-  ( X  e.  D  ->  ( Y  e.  ( F `  X )  <->  Y  e.  { w  e.  [_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph } ) )
42 dfsbcq 3006 . . . . . . 7  |-  ( w  =  Y  ->  ( [. w  /  y ]. ph  <->  [. Y  /  y ]. ph ) )
4342sbcbidv 3058 . . . . . 6  |-  ( w  =  Y  ->  ( [. X  /  x ]. [. w  /  y ]. ph  <->  [. X  /  x ]. [. Y  /  y ]. ph ) )
4443elrab 2936 . . . . 5  |-  ( Y  e.  { w  e. 
[_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph }  <->  ( Y  e.  [_ X  /  x ]_ B  /\  [. X  /  x ]. [. Y  /  y ]. ph ) )
4544a1i 10 . . . 4  |-  ( X  e.  D  ->  ( Y  e.  { w  e.  [_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph }  <->  ( Y  e.  [_ X  /  x ]_ B  /\  [. X  /  x ]. [. Y  /  y ]. ph ) ) )
46 nfcvd 2433 . . . . . . 7  |-  ( X  e.  D  ->  F/_ x C )
47 elmptrab.s2 . . . . . . 7  |-  ( x  =  X  ->  B  =  C )
4846, 47csbiegf 3134 . . . . . 6  |-  ( X  e.  D  ->  [_ X  /  x ]_ B  =  C )
4948eleq2d 2363 . . . . 5  |-  ( X  e.  D  ->  ( Y  e.  [_ X  /  x ]_ B  <->  Y  e.  C ) )
5049anbi1d 685 . . . 4  |-  ( X  e.  D  ->  (
( Y  e.  [_ X  /  x ]_ B  /\  [. X  /  x ]. [. Y  /  y ]. ph )  <->  ( Y  e.  C  /\  [. X  /  x ]. [. Y  /  y ]. ph )
) )
51 nfv 1609 . . . . . 6  |-  F/ x ps
52 nfv 1609 . . . . . 6  |-  F/ y ps
53 nfv 1609 . . . . . 6  |-  F/ x  Y  e.  C
54 elmptrab.s1 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps )
)
5551, 52, 53, 54sbc2iegf 3070 . . . . 5  |-  ( ( X  e.  D  /\  Y  e.  C )  ->  ( [. X  /  x ]. [. Y  / 
y ]. ph  <->  ps )
)
5655pm5.32da 622 . . . 4  |-  ( X  e.  D  ->  (
( Y  e.  C  /\  [. X  /  x ]. [. Y  /  y ]. ph )  <->  ( Y  e.  C  /\  ps )
) )
5745, 50, 563bitrd 270 . . 3  |-  ( X  e.  D  ->  ( Y  e.  { w  e.  [_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph }  <->  ( Y  e.  C  /\  ps ) ) )
58 3anass 938 . . . 4  |-  ( ( X  e.  D  /\  Y  e.  C  /\  ps )  <->  ( X  e.  D  /\  ( Y  e.  C  /\  ps ) ) )
5958baibr 872 . . 3  |-  ( X  e.  D  ->  (
( Y  e.  C  /\  ps )  <->  ( X  e.  D  /\  Y  e.  C  /\  ps )
) )
6041, 57, 593bitrd 270 . 2  |-  ( X  e.  D  ->  ( Y  e.  ( F `  X )  <->  ( X  e.  D  /\  Y  e.  C  /\  ps )
) )
614, 5, 60pm5.21nii 342 1  |-  ( Y  e.  ( F `  X )  <->  ( X  e.  D  /\  Y  e.  C  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {crab 2560   _Vcvv 2801   [.wsbc 3004   [_csb 3094    e. cmpt 4093   dom cdm 4705   ` cfv 5271
This theorem is referenced by:  elmptrab2  17539  isfbas  17540
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fv 5279
  Copyright terms: Public domain W3C validator