Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmzpcl Unicode version

Theorem elmzpcl 26907
Description: Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
elmzpcl  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g )  e.  P ) ) ) ) )
Distinct variable groups:    f, V, g    i, V    j, V, x    P, f, g    P, i    P, j, x

Proof of Theorem elmzpcl
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 mzpclval 26906 . . 3  |-  ( V  e.  _V  ->  (mzPolyCld `  V )  =  {
p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  o F  +  g )  e.  p  /\  ( f  o F  x.  g )  e.  p ) ) } )
21eleq2d 2363 . 2  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  P  e.  { p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  o F  +  g )  e.  p  /\  ( f  o F  x.  g
)  e.  p ) ) } ) )
3 eleq2 2357 . . . . . . 7  |-  ( p  =  P  ->  (
( ( ZZ  ^m  V )  X.  {
i } )  e.  p  <->  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P ) )
43ralbidv 2576 . . . . . 6  |-  ( p  =  P  ->  ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  <->  A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  P ) )
5 eleq2 2357 . . . . . . 7  |-  ( p  =  P  ->  (
( x  e.  ( ZZ  ^m  V ) 
|->  ( x `  j
) )  e.  p  <->  ( x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P ) )
65ralbidv 2576 . . . . . 6  |-  ( p  =  P  ->  ( A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  p  <->  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  P ) )
74, 6anbi12d 691 . . . . 5  |-  ( p  =  P  ->  (
( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  <-> 
( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P ) ) )
8 eleq2 2357 . . . . . . . 8  |-  ( p  =  P  ->  (
( f  o F  +  g )  e.  p  <->  ( f  o F  +  g )  e.  P ) )
9 eleq2 2357 . . . . . . . 8  |-  ( p  =  P  ->  (
( f  o F  x.  g )  e.  p  <->  ( f  o F  x.  g )  e.  P ) )
108, 9anbi12d 691 . . . . . . 7  |-  ( p  =  P  ->  (
( ( f  o F  +  g )  e.  p  /\  (
f  o F  x.  g )  e.  p
)  <->  ( ( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g )  e.  P ) ) )
1110raleqbi1dv 2757 . . . . . 6  |-  ( p  =  P  ->  ( A. g  e.  p  ( ( f  o F  +  g )  e.  p  /\  (
f  o F  x.  g )  e.  p
)  <->  A. g  e.  P  ( ( f  o F  +  g )  e.  P  /\  (
f  o F  x.  g )  e.  P
) ) )
1211raleqbi1dv 2757 . . . . 5  |-  ( p  =  P  ->  ( A. f  e.  p  A. g  e.  p  ( ( f  o F  +  g )  e.  p  /\  (
f  o F  x.  g )  e.  p
)  <->  A. f  e.  P  A. g  e.  P  ( ( f  o F  +  g )  e.  P  /\  (
f  o F  x.  g )  e.  P
) ) )
137, 12anbi12d 691 . . . 4  |-  ( p  =  P  ->  (
( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  o F  +  g )  e.  p  /\  ( f  o F  x.  g )  e.  p ) )  <->  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  (
( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g
)  e.  P ) ) ) )
1413elrab 2936 . . 3  |-  ( P  e.  { p  e. 
~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  o F  +  g )  e.  p  /\  ( f  o F  x.  g
)  e.  p ) ) }  <->  ( P  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  (
( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g
)  e.  P ) ) ) )
15 ovex 5899 . . . . 5  |-  ( ZZ 
^m  ( ZZ  ^m  V ) )  e. 
_V
1615elpw2 4191 . . . 4  |-  ( P  e.  ~P ( ZZ 
^m  ( ZZ  ^m  V ) )  <->  P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
1716anbi1i 676 . . 3  |-  ( ( P  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g )  e.  P ) ) )  <-> 
( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g )  e.  P ) ) ) )
1814, 17bitri 240 . 2  |-  ( P  e.  { p  e. 
~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  o F  +  g )  e.  p  /\  ( f  o F  x.  g
)  e.  p ) ) }  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g )  e.  P ) ) ) )
192, 18syl6bb 252 1  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g )  e.  P ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   _Vcvv 2801    C_ wss 3165   ~Pcpw 3638   {csn 3653    e. cmpt 4093    X. cxp 4703   ` cfv 5271  (class class class)co 5874    o Fcof 6092    ^m cmap 6788    + caddc 8756    x. cmul 8758   ZZcz 10040  mzPolyCldcmzpcl 26902
This theorem is referenced by:  mzpclall  26908  mzpcl1  26910  mzpcl2  26911  mzpcl34  26912  mzpincl  26915  mzpindd  26927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-mzpcl 26904
  Copyright terms: Public domain W3C validator