MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnz1 Unicode version

Theorem elnnz1 10049
Description: Natural number property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elnnz1  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  1  <_  N ) )

Proof of Theorem elnnz1
StepHypRef Expression
1 nnz 10045 . . 3  |-  ( N  e.  NN  ->  N  e.  ZZ )
2 nnge1 9772 . . 3  |-  ( N  e.  NN  ->  1  <_  N )
31, 2jca 518 . 2  |-  ( N  e.  NN  ->  ( N  e.  ZZ  /\  1  <_  N ) )
4 0lt1 9296 . . . . 5  |-  0  <  1
5 zre 10028 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  RR )
6 0re 8838 . . . . . . 7  |-  0  e.  RR
7 1re 8837 . . . . . . 7  |-  1  e.  RR
8 ltletr 8913 . . . . . . 7  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
96, 7, 8mp3an12 1267 . . . . . 6  |-  ( N  e.  RR  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
105, 9syl 15 . . . . 5  |-  ( N  e.  ZZ  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
114, 10mpani 657 . . . 4  |-  ( N  e.  ZZ  ->  (
1  <_  N  ->  0  <  N ) )
1211imdistani 671 . . 3  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
( N  e.  ZZ  /\  0  <  N ) )
13 elnnz 10034 . . 3  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
1412, 13sylibr 203 . 2  |-  ( ( N  e.  ZZ  /\  1  <_  N )  ->  N  e.  NN )
153, 14impbii 180 1  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  1  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   class class class wbr 4023   RRcr 8736   0cc0 8737   1c1 8738    < clt 8867    <_ cle 8868   NNcn 9746   ZZcz 10024
This theorem is referenced by:  znnnlt1  10050  nnzrab  10051  uzindOLD  10106  eluz2b2  10290  elfznn  10819  flge1nn  10949  dvdslelem  12573  gcdcllem3  12692  4sqlem11  13002  ovolunlem1a  18855  ovoliunlem1  18861  ppinncl  20412  bcmono  20516  axlowdimlem16  24585  fz1eqin  26848  lzenom  26849
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-z 10025
  Copyright terms: Public domain W3C validator