MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnpi Unicode version

Theorem elnpi 8829
Description: Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnpi  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem elnpi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2932 . 2  |-  ( A  e.  P.  ->  A  e.  _V )
2 simpl1 960 . 2  |-  ( ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) )  ->  A  e.  _V )
3 psseq2 3403 . . . . . 6  |-  ( z  =  A  ->  ( (/)  C.  z  <->  (/)  C.  A )
)
4 psseq1 3402 . . . . . 6  |-  ( z  =  A  ->  (
z  C.  Q.  <->  A  C.  Q. ) )
53, 4anbi12d 692 . . . . 5  |-  ( z  =  A  ->  (
( (/)  C.  z  /\  z  C.  Q. )  <->  ( (/)  C.  A  /\  A  C.  Q. )
) )
6 eleq2 2473 . . . . . . . . 9  |-  ( z  =  A  ->  (
y  e.  z  <->  y  e.  A ) )
76imbi2d 308 . . . . . . . 8  |-  ( z  =  A  ->  (
( y  <Q  x  ->  y  e.  z )  <-> 
( y  <Q  x  ->  y  e.  A ) ) )
87albidv 1632 . . . . . . 7  |-  ( z  =  A  ->  ( A. y ( y  <Q  x  ->  y  e.  z )  <->  A. y ( y 
<Q  x  ->  y  e.  A ) ) )
9 rexeq 2873 . . . . . . 7  |-  ( z  =  A  ->  ( E. y  e.  z  x  <Q  y  <->  E. y  e.  A  x  <Q  y ) )
108, 9anbi12d 692 . . . . . 6  |-  ( z  =  A  ->  (
( A. y ( y  <Q  x  ->  y  e.  z )  /\  E. y  e.  z  x 
<Q  y )  <->  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) )
1110raleqbi1dv 2880 . . . . 5  |-  ( z  =  A  ->  ( A. x  e.  z 
( A. y ( y  <Q  x  ->  y  e.  z )  /\  E. y  e.  z  x 
<Q  y )  <->  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) )
125, 11anbi12d 692 . . . 4  |-  ( z  =  A  ->  (
( ( (/)  C.  z  /\  z  C.  Q. )  /\  A. x  e.  z  ( A. y ( y  <Q  x  ->  y  e.  z )  /\  E. y  e.  z  x 
<Q  y ) )  <->  ( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) ) )
13 df-np 8822 . . . 4  |-  P.  =  { z  |  ( ( (/)  C.  z  /\  z  C.  Q. )  /\  A. x  e.  z  ( A. y ( y 
<Q  x  ->  y  e.  z )  /\  E. y  e.  z  x  <Q  y ) ) }
1412, 13elab2g 3052 . . 3  |-  ( A  e.  _V  ->  ( A  e.  P.  <->  ( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) ) ) )
15 id 20 . . . . . 6  |-  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  ->  ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )
)
16153expib 1156 . . . . 5  |-  ( A  e.  _V  ->  (
( (/)  C.  A  /\  A  C.  Q. )  -> 
( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. ) ) )
17 3simpc 956 . . . . 5  |-  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  ->  ( (/)  C.  A  /\  A  C.  Q. ) )
1816, 17impbid1 195 . . . 4  |-  ( A  e.  _V  ->  (
( (/)  C.  A  /\  A  C.  Q. )  <->  ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )
) )
1918anbi1d 686 . . 3  |-  ( A  e.  _V  ->  (
( ( (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) )  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) ) )
2014, 19bitrd 245 . 2  |-  ( A  e.  _V  ->  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) ) )
211, 2, 20pm5.21nii 343 1  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1546    = wceq 1649    e. wcel 1721   A.wral 2674   E.wrex 2675   _Vcvv 2924    C. wpss 3289   (/)c0 3596   class class class wbr 4180   Q.cnq 8691    <Q cltq 8697   P.cnp 8698
This theorem is referenced by:  prn0  8830  prpssnq  8831  prcdnq  8834  prnmax  8836
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-v 2926  df-in 3295  df-ss 3302  df-pss 3304  df-np 8822
  Copyright terms: Public domain W3C validator