MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elocv Structured version   Unicode version

Theorem elocv 16887
Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v  |-  V  =  ( Base `  W
)
ocvfval.i  |-  .,  =  ( .i `  W )
ocvfval.f  |-  F  =  (Scalar `  W )
ocvfval.z  |-  .0.  =  ( 0g `  F )
ocvfval.o  |-  ._|_  =  ( ocv `  W )
Assertion
Ref Expression
elocv  |-  ( A  e.  (  ._|_  `  S
)  <->  ( S  C_  V  /\  A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) )
Distinct variable groups:    x,  .0.    x, A    x, V    x, W    x,  .,    x, S
Allowed substitution hints:    F( x)    ._|_ ( x)

Proof of Theorem elocv
Dummy variables  s 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 5749 . . . . 5  |-  ( A  e.  (  ._|_  `  S
)  ->  S  e.  dom  ._|_  )
2 n0i 3625 . . . . . . . . 9  |-  ( A  e.  (  ._|_  `  S
)  ->  -.  (  ._|_  `  S )  =  (/) )
3 ocvfval.o . . . . . . . . . . . 12  |-  ._|_  =  ( ocv `  W )
4 fvprc 5714 . . . . . . . . . . . 12  |-  ( -.  W  e.  _V  ->  ( ocv `  W )  =  (/) )
53, 4syl5eq 2479 . . . . . . . . . . 11  |-  ( -.  W  e.  _V  ->  ._|_ 
=  (/) )
65fveq1d 5722 . . . . . . . . . 10  |-  ( -.  W  e.  _V  ->  ( 
._|_  `  S )  =  ( (/) `  S ) )
7 fv01 5755 . . . . . . . . . 10  |-  ( (/) `  S )  =  (/)
86, 7syl6eq 2483 . . . . . . . . 9  |-  ( -.  W  e.  _V  ->  ( 
._|_  `  S )  =  (/) )
92, 8nsyl2 121 . . . . . . . 8  |-  ( A  e.  (  ._|_  `  S
)  ->  W  e.  _V )
10 ocvfval.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
11 ocvfval.i . . . . . . . . 9  |-  .,  =  ( .i `  W )
12 ocvfval.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
13 ocvfval.z . . . . . . . . 9  |-  .0.  =  ( 0g `  F )
1410, 11, 12, 13, 3ocvfval 16885 . . . . . . . 8  |-  ( W  e.  _V  ->  ._|_  =  ( s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s  ( y  .,  x )  =  .0. 
} ) )
159, 14syl 16 . . . . . . 7  |-  ( A  e.  (  ._|_  `  S
)  ->  ._|_  =  ( s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s  ( y  .,  x
)  =  .0.  }
) )
1615dmeqd 5064 . . . . . 6  |-  ( A  e.  (  ._|_  `  S
)  ->  dom  ._|_  =  dom  ( s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s  ( y  .,  x )  =  .0. 
} ) )
17 fvex 5734 . . . . . . . . 9  |-  ( Base `  W )  e.  _V
1810, 17eqeltri 2505 . . . . . . . 8  |-  V  e. 
_V
1918rabex 4346 . . . . . . 7  |-  { y  e.  V  |  A. x  e.  s  (
y  .,  x )  =  .0.  }  e.  _V
20 eqid 2435 . . . . . . 7  |-  ( s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s 
( y  .,  x
)  =  .0.  }
)  =  ( s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s 
( y  .,  x
)  =  .0.  }
)
2119, 20dmmpti 5566 . . . . . 6  |-  dom  (
s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s  ( y  .,  x
)  =  .0.  }
)  =  ~P V
2216, 21syl6eq 2483 . . . . 5  |-  ( A  e.  (  ._|_  `  S
)  ->  dom  ._|_  =  ~P V )
231, 22eleqtrd 2511 . . . 4  |-  ( A  e.  (  ._|_  `  S
)  ->  S  e.  ~P V )
2423elpwid 3800 . . 3  |-  ( A  e.  (  ._|_  `  S
)  ->  S  C_  V
)
2510, 11, 12, 13, 3ocvval 16886 . . . . 5  |-  ( S 
C_  V  ->  (  ._|_  `  S )  =  { y  e.  V  |  A. x  e.  S  ( y  .,  x
)  =  .0.  }
)
2625eleq2d 2502 . . . 4  |-  ( S 
C_  V  ->  ( A  e.  (  ._|_  `  S )  <->  A  e.  { y  e.  V  |  A. x  e.  S  ( y  .,  x
)  =  .0.  }
) )
27 oveq1 6080 . . . . . . 7  |-  ( y  =  A  ->  (
y  .,  x )  =  ( A  .,  x ) )
2827eqeq1d 2443 . . . . . 6  |-  ( y  =  A  ->  (
( y  .,  x
)  =  .0.  <->  ( A  .,  x )  =  .0.  ) )
2928ralbidv 2717 . . . . 5  |-  ( y  =  A  ->  ( A. x  e.  S  ( y  .,  x
)  =  .0.  <->  A. x  e.  S  ( A  .,  x )  =  .0.  ) )
3029elrab 3084 . . . 4  |-  ( A  e.  { y  e.  V  |  A. x  e.  S  ( y  .,  x )  =  .0. 
}  <->  ( A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) )
3126, 30syl6bb 253 . . 3  |-  ( S 
C_  V  ->  ( A  e.  (  ._|_  `  S )  <->  ( A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) ) )
3224, 31biadan2 624 . 2  |-  ( A  e.  (  ._|_  `  S
)  <->  ( S  C_  V  /\  ( A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) ) )
33 3anass 940 . 2  |-  ( ( S  C_  V  /\  A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  )  <->  ( S  C_  V  /\  ( A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) ) )
3432, 33bitr4i 244 1  |-  ( A  e.  (  ._|_  `  S
)  <->  ( S  C_  V  /\  A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701   _Vcvv 2948    C_ wss 3312   (/)c0 3620   ~Pcpw 3791    e. cmpt 4258   dom cdm 4870   ` cfv 5446  (class class class)co 6073   Basecbs 13461  Scalarcsca 13524   .icip 13526   0gc0g 13715   ocvcocv 16879
This theorem is referenced by:  ocvi  16888  ocvss  16889  ocvocv  16890  ocvlss  16891  ocv2ss  16892  unocv  16899  iunocv  16900  obselocv  16947  clsocv  19196  pjthlem2  19331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-ocv 16882
  Copyright terms: Public domain W3C validator