Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elop Unicode version

Theorem elop 4255
 Description: An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
elop.1
elop.2
elop.3
Assertion
Ref Expression
elop

Proof of Theorem elop
StepHypRef Expression
1 elop.2 . . . 4
2 elop.3 . . . 4
31, 2dfop 3811 . . 3
43eleq2i 2360 . 2
5 elop.1 . . 3
65elpr 3671 . 2
74, 6bitri 240 1
 Colors of variables: wff set class Syntax hints:   wb 176   wo 357   wceq 1632   wcel 1696  cvv 2801  csn 3653  cpr 3654  cop 3656 This theorem is referenced by:  relop  4850 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662
 Copyright terms: Public domain W3C validator