MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elop Unicode version

Theorem elop 4239
Description: An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
elop.1  |-  A  e. 
_V
elop.2  |-  B  e. 
_V
elop.3  |-  C  e. 
_V
Assertion
Ref Expression
elop  |-  ( A  e.  <. B ,  C >.  <-> 
( A  =  { B }  \/  A  =  { B ,  C } ) )

Proof of Theorem elop
StepHypRef Expression
1 elop.2 . . . 4  |-  B  e. 
_V
2 elop.3 . . . 4  |-  C  e. 
_V
31, 2dfop 3795 . . 3  |-  <. B ,  C >.  =  { { B } ,  { B ,  C } }
43eleq2i 2347 . 2  |-  ( A  e.  <. B ,  C >.  <-> 
A  e.  { { B } ,  { B ,  C } } )
5 elop.1 . . 3  |-  A  e. 
_V
65elpr 3658 . 2  |-  ( A  e.  { { B } ,  { B ,  C } }  <->  ( A  =  { B }  \/  A  =  { B ,  C } ) )
74, 6bitri 240 1  |-  ( A  e.  <. B ,  C >.  <-> 
( A  =  { B }  \/  A  =  { B ,  C } ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    = wceq 1623    e. wcel 1684   _Vcvv 2788   {csn 3640   {cpr 3641   <.cop 3643
This theorem is referenced by:  relop  4834
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649
  Copyright terms: Public domain W3C validator