MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopaba Unicode version

Theorem elopaba 6182
Description: Membership in an ordered pair class builder. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
copsex2ga.1  |-  ( A  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
elopaba  |-  ( A  e.  { <. x ,  y >.  |  ps } 
<->  ( A  e.  ( _V  X.  _V )  /\  ph ) )
Distinct variable groups:    x, y, A    ph, x, y
Allowed substitution hints:    ps( x, y)

Proof of Theorem elopaba
StepHypRef Expression
1 elopab 4272 . 2  |-  ( A  e.  { <. x ,  y >.  |  ps } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ps ) )
2 copsex2ga.1 . . 3  |-  ( A  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
32copsex2gb 6180 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  ps ) 
<->  ( A  e.  ( _V  X.  _V )  /\  ph ) )
41, 3bitri 240 1  |-  ( A  e.  { <. x ,  y >.  |  ps } 
<->  ( A  e.  ( _V  X.  _V )  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643   {copab 4076    X. cxp 4687
This theorem is referenced by:  dicelvalN  31368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695
  Copyright terms: Public domain W3C validator