Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopabi Structured version   Unicode version

Theorem elopabi 6404
 Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
Hypotheses
Ref Expression
elopabi.1
elopabi.2
Assertion
Ref Expression
elopabi
Distinct variable groups:   ,,   ,,
Allowed substitution hints:   (,)   (,)

Proof of Theorem elopabi
StepHypRef Expression
1 relopab 4993 . . . 4
2 1st2nd 6385 . . . 4
31, 2mpan 652 . . 3
4 id 20 . . 3
53, 4eqeltrrd 2510 . 2
6 fvex 5734 . . 3
7 fvex 5734 . . 3
8 elopabi.1 . . 3
9 elopabi.2 . . 3
106, 7, 8, 9opelopab 4468 . 2
115, 10sylib 189 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wcel 1725  cop 3809  copab 4257   wrel 4875  cfv 5446  c1st 6339  c2nd 6340 This theorem is referenced by:  drngoi  21987  vci  22019  dicelval1sta  31922 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fv 5454  df-1st 6341  df-2nd 6342
 Copyright terms: Public domain W3C validator