Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eloprabg Structured version   Unicode version

Theorem eloprabg 6161
 Description: The law of concretion for operation class abstraction. Compare elopab 4462. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1
eloprabg.2
eloprabg.3
Assertion
Ref Expression
eloprabg
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,
Allowed substitution hints:   (,,)   (,,)   (,,)   (,,)   (,,)   (,,)

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3
2 eloprabg.2 . . 3
3 eloprabg.3 . . 3
41, 2, 3syl3an9b 1252 . 2
54eloprabga 6160 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   w3a 936   wceq 1652   wcel 1725  cop 3817  coprab 6082 This theorem is referenced by:  ov  6193  ovg  6212  isnvlem  22089  isphg  22318  brbtwn  25838  fvtransport  25966  brcolinear2  25992  colineardim1  25995  fvray  26075  fvline  26078 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-oprab 6085
 Copyright terms: Public domain W3C validator