Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd0 Unicode version

Theorem elpadd0 29998
Description: Member of projective subspace sum with at least one empty set.. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
padd0.a  |-  A  =  ( Atoms `  K )
padd0.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
elpadd0  |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  -.  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  ( X  .+  Y )  <-> 
( S  e.  X  \/  S  e.  Y
) ) )

Proof of Theorem elpadd0
Dummy variables  q 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neanior 2531 . . . 4  |-  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  <->  -.  ( X  =  (/)  \/  Y  =  (/) ) )
21bicomi 193 . . 3  |-  ( -.  ( X  =  (/)  \/  Y  =  (/) )  <->  ( X  =/=  (/)  /\  Y  =/=  (/) ) )
32con1bii 321 . 2  |-  ( -.  ( X  =/=  (/)  /\  Y  =/=  (/) )  <->  ( X  =  (/)  \/  Y  =  (/) ) )
4 eqid 2283 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
5 eqid 2283 . . . 4  |-  ( join `  K )  =  (
join `  K )
6 padd0.a . . . 4  |-  A  =  ( Atoms `  K )
7 padd0.p . . . 4  |-  .+  =  ( + P `  K
)
84, 5, 6, 7elpadd 29988 . . 3  |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( S  e.  ( X  .+  Y )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r ) ) ) ) )
9 rex0 3468 . . . . . . . 8  |-  -.  E. q  e.  (/)  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r )
10 rexeq 2737 . . . . . . . 8  |-  ( X  =  (/)  ->  ( E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r )  <->  E. q  e.  (/)  E. r  e.  Y  S ( le
`  K ) ( q ( join `  K
) r ) ) )
119, 10mtbiri 294 . . . . . . 7  |-  ( X  =  (/)  ->  -.  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) )
12 rex0 3468 . . . . . . . . . 10  |-  -.  E. r  e.  (/)  S ( le `  K ) ( q ( join `  K ) r )
1312a1i 10 . . . . . . . . 9  |-  ( q  e.  X  ->  -.  E. r  e.  (/)  S ( le `  K ) ( q ( join `  K ) r ) )
1413nrex 2645 . . . . . . . 8  |-  -.  E. q  e.  X  E. r  e.  (/)  S ( le `  K ) ( q ( join `  K ) r )
15 rexeq 2737 . . . . . . . . 9  |-  ( Y  =  (/)  ->  ( E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r )  <->  E. r  e.  (/)  S ( le
`  K ) ( q ( join `  K
) r ) ) )
1615rexbidv 2564 . . . . . . . 8  |-  ( Y  =  (/)  ->  ( E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r )  <->  E. q  e.  X  E. r  e.  (/)  S ( le
`  K ) ( q ( join `  K
) r ) ) )
1714, 16mtbiri 294 . . . . . . 7  |-  ( Y  =  (/)  ->  -.  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) )
1811, 17jaoi 368 . . . . . 6  |-  ( ( X  =  (/)  \/  Y  =  (/) )  ->  -.  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) )
1918intnand 882 . . . . 5  |-  ( ( X  =  (/)  \/  Y  =  (/) )  ->  -.  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r ) ) )
20 biorf 394 . . . . 5  |-  ( -.  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r ) )  ->  ( ( S  e.  X  \/  S  e.  Y )  <->  ( ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) )  \/  ( S  e.  X  \/  S  e.  Y
) ) ) )
2119, 20syl 15 . . . 4  |-  ( ( X  =  (/)  \/  Y  =  (/) )  ->  (
( S  e.  X  \/  S  e.  Y
)  <->  ( ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) )  \/  ( S  e.  X  \/  S  e.  Y
) ) ) )
22 orcom 376 . . . 4  |-  ( ( ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r ) )  \/  ( S  e.  X  \/  S  e.  Y ) )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S ( le `  K ) ( q ( join `  K
) r ) ) ) )
2321, 22syl6rbb 253 . . 3  |-  ( ( X  =  (/)  \/  Y  =  (/) )  ->  (
( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S
( le `  K
) ( q (
join `  K )
r ) ) )  <-> 
( S  e.  X  \/  S  e.  Y
) ) )
248, 23sylan9bb 680 . 2  |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =  (/)  \/  Y  =  (/) ) )  -> 
( S  e.  ( X  .+  Y )  <-> 
( S  e.  X  \/  S  e.  Y
) ) )
253, 24sylan2b 461 1  |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  -.  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( S  e.  ( X  .+  Y )  <-> 
( S  e.  X  \/  S  e.  Y
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    C_ wss 3152   (/)c0 3455   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   Atomscatm 29453   + Pcpadd 29984
This theorem is referenced by:  paddval0  29999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-padd 29985
  Copyright terms: Public domain W3C validator