Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpell1qr Unicode version

Theorem elpell1qr 26603
Description: Membership in a first-quadrant Pell solution set. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
elpell1qr  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell1QR `  D )  <->  ( A  e.  RR  /\  E. z  e.  NN0  E. w  e. 
NN0  ( A  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) ) )
Distinct variable groups:    z, w, D    z, A, w

Proof of Theorem elpell1qr
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 pell1qrval 26602 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
(Pell1QR `  D )  =  { a  e.  RR  |  E. z  e.  NN0  E. w  e.  NN0  (
a  =  ( z  +  ( ( sqr `  D )  x.  w
) )  /\  (
( z ^ 2 )  -  ( D  x.  ( w ^
2 ) ) )  =  1 ) } )
21eleq2d 2456 . 2  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell1QR `  D )  <->  A  e.  { a  e.  RR  |  E. z  e.  NN0  E. w  e.  NN0  (
a  =  ( z  +  ( ( sqr `  D )  x.  w
) )  /\  (
( z ^ 2 )  -  ( D  x.  ( w ^
2 ) ) )  =  1 ) } ) )
3 eqeq1 2395 . . . . 5  |-  ( a  =  A  ->  (
a  =  ( z  +  ( ( sqr `  D )  x.  w
) )  <->  A  =  ( z  +  ( ( sqr `  D
)  x.  w ) ) ) )
43anbi1d 686 . . . 4  |-  ( a  =  A  ->  (
( a  =  ( z  +  ( ( sqr `  D )  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  (
w ^ 2 ) ) )  =  1 )  <->  ( A  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) )
542rexbidv 2694 . . 3  |-  ( a  =  A  ->  ( E. z  e.  NN0  E. w  e.  NN0  (
a  =  ( z  +  ( ( sqr `  D )  x.  w
) )  /\  (
( z ^ 2 )  -  ( D  x.  ( w ^
2 ) ) )  =  1 )  <->  E. z  e.  NN0  E. w  e. 
NN0  ( A  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) )
65elrab 3037 . 2  |-  ( A  e.  { a  e.  RR  |  E. z  e.  NN0  E. w  e. 
NN0  ( a  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) }  <->  ( A  e.  RR  /\  E. z  e.  NN0  E. w  e. 
NN0  ( A  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) )
72, 6syl6bb 253 1  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell1QR `  D )  <->  ( A  e.  RR  /\  E. z  e.  NN0  E. w  e. 
NN0  ( A  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2652   {crab 2655    \ cdif 3262   ` cfv 5396  (class class class)co 6022   RRcr 8924   1c1 8926    + caddc 8928    x. cmul 8930    - cmin 9225   NNcn 9934   2c2 9983   NN0cn0 10155   ^cexp 11311   sqrcsqr 11967  ◻NNcsquarenn 26592  Pell1QRcpell1qr 26593
This theorem is referenced by:  pell1qrss14  26624  pell14qrdich  26625  pell1qrge1  26626  pell1qr1  26627  pell1qrgap  26630  pellqrexplicit  26633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346  ax-cnex 8981  ax-resscn 8982
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-iota 5360  df-fun 5398  df-fv 5404  df-ov 6025  df-pell1qr 26598
  Copyright terms: Public domain W3C validator