Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpell1qr Unicode version

Theorem elpell1qr 26932
Description: Membership in a first-quadrant Pell solution set. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
elpell1qr  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell1QR `  D )  <->  ( A  e.  RR  /\  E. z  e.  NN0  E. w  e. 
NN0  ( A  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) ) )
Distinct variable groups:    z, w, D    z, A, w

Proof of Theorem elpell1qr
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 pell1qrval 26931 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
(Pell1QR `  D )  =  { a  e.  RR  |  E. z  e.  NN0  E. w  e.  NN0  (
a  =  ( z  +  ( ( sqr `  D )  x.  w
) )  /\  (
( z ^ 2 )  -  ( D  x.  ( w ^
2 ) ) )  =  1 ) } )
21eleq2d 2350 . 2  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell1QR `  D )  <->  A  e.  { a  e.  RR  |  E. z  e.  NN0  E. w  e.  NN0  (
a  =  ( z  +  ( ( sqr `  D )  x.  w
) )  /\  (
( z ^ 2 )  -  ( D  x.  ( w ^
2 ) ) )  =  1 ) } ) )
3 eqeq1 2289 . . . . 5  |-  ( a  =  A  ->  (
a  =  ( z  +  ( ( sqr `  D )  x.  w
) )  <->  A  =  ( z  +  ( ( sqr `  D
)  x.  w ) ) ) )
43anbi1d 685 . . . 4  |-  ( a  =  A  ->  (
( a  =  ( z  +  ( ( sqr `  D )  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  (
w ^ 2 ) ) )  =  1 )  <->  ( A  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) )
542rexbidv 2586 . . 3  |-  ( a  =  A  ->  ( E. z  e.  NN0  E. w  e.  NN0  (
a  =  ( z  +  ( ( sqr `  D )  x.  w
) )  /\  (
( z ^ 2 )  -  ( D  x.  ( w ^
2 ) ) )  =  1 )  <->  E. z  e.  NN0  E. w  e. 
NN0  ( A  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) )
65elrab 2923 . 2  |-  ( A  e.  { a  e.  RR  |  E. z  e.  NN0  E. w  e. 
NN0  ( a  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) }  <->  ( A  e.  RR  /\  E. z  e.  NN0  E. w  e. 
NN0  ( A  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) )
72, 6syl6bb 252 1  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell1QR `  D )  <->  ( A  e.  RR  /\  E. z  e.  NN0  E. w  e. 
NN0  ( A  =  ( z  +  ( ( sqr `  D
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( D  x.  ( w ^ 2 ) ) )  =  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547    \ cdif 3149   ` cfv 5255  (class class class)co 5858   RRcr 8736   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037   NNcn 9746   2c2 9795   NN0cn0 9965   ^cexp 11104   sqrcsqr 11718  ◻NNcsquarenn 26921  Pell1QRcpell1qr 26922
This theorem is referenced by:  pell1qrss14  26953  pell14qrdich  26954  pell1qrge1  26955  pell1qr1  26956  pell1qrgap  26959  pellqrexplicit  26962
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-pell1qr 26927
  Copyright terms: Public domain W3C validator