MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpm2g Structured version   Unicode version

Theorem elpm2g 7062
Description: The predicate "is a partial function." (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( F  e.  ( A  ^pm  B )  <->  ( F : dom  F --> A  /\  dom  F  C_  B ) ) )

Proof of Theorem elpm2g
StepHypRef Expression
1 elpmg 7061 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( F  e.  ( A  ^pm  B )  <->  ( Fun  F  /\  F  C_  ( B  X.  A
) ) ) )
2 funssxp 5633 . 2  |-  ( ( Fun  F  /\  F  C_  ( B  X.  A
) )  <->  ( F : dom  F --> A  /\  dom  F  C_  B )
)
31, 2syl6bb 254 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( F  e.  ( A  ^pm  B )  <->  ( F : dom  F --> A  /\  dom  F  C_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1727    C_ wss 3306    X. cxp 4905   dom cdm 4907   Fun wfun 5477   -->wf 5479  (class class class)co 6110    ^pm cpm 7048
This theorem is referenced by:  elpm2r  7063  elpmi  7064  elpm2  7074  lmcnp  17399  cmetcaulem  19272  mbfres  19565  dvbsss  19820  perfdvf  19821  dvnff  19840  dvnf  19844  dvnbss  19845  dvnadd  19846  cpnord  19852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-pm 7050
  Copyright terms: Public domain W3C validator