MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpm2r Unicode version

Theorem elpm2r 6788
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2r  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( F : C --> A  /\  C  C_  B ) )  ->  F  e.  ( A  ^pm  B ) )

Proof of Theorem elpm2r
StepHypRef Expression
1 fdm 5393 . . . . . . 7  |-  ( F : C --> A  ->  dom  F  =  C )
21feq2d 5380 . . . . . 6  |-  ( F : C --> A  -> 
( F : dom  F --> A  <->  F : C --> A ) )
31sseq1d 3205 . . . . . 6  |-  ( F : C --> A  -> 
( dom  F  C_  B  <->  C 
C_  B ) )
42, 3anbi12d 691 . . . . 5  |-  ( F : C --> A  -> 
( ( F : dom  F --> A  /\  dom  F 
C_  B )  <->  ( F : C --> A  /\  C  C_  B ) ) )
54adantr 451 . . . 4  |-  ( ( F : C --> A  /\  C  C_  B )  -> 
( ( F : dom  F --> A  /\  dom  F 
C_  B )  <->  ( F : C --> A  /\  C  C_  B ) ) )
65ibir 233 . . 3  |-  ( ( F : C --> A  /\  C  C_  B )  -> 
( F : dom  F --> A  /\  dom  F  C_  B ) )
7 elpm2g 6787 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( F  e.  ( A  ^pm  B )  <->  ( F : dom  F --> A  /\  dom  F  C_  B ) ) )
86, 7syl5ibr 212 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( F : C
--> A  /\  C  C_  B )  ->  F  e.  ( A  ^pm  B
) ) )
98imp 418 1  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( F : C --> A  /\  C  C_  B ) )  ->  F  e.  ( A  ^pm  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684    C_ wss 3152   dom cdm 4689   -->wf 5251  (class class class)co 5858    ^pm cpm 6773
This theorem is referenced by:  fpmg  6793  pmresg  6795  rlim  11969  ello12  11990  elo12  12001  sscpwex  13692  catcfuccl  13941  catcxpccl  13981  lmbrf  16990  lmmbrf  18688  iscauf  18706  caucfil  18709  cmetcaulem  18714  lmclimf  18729  ismbf  18985  ismbfcn  18986  mbfconst  18990  cncombf  19013  cnmbf  19014  limcfval  19222  dvfval  19247  dvnff  19272  dvn2bss  19279  dvnfre  19301  taylfvallem1  19736  taylfval  19738  tayl0  19741  taylplem1  19742  taylply2  19747  taylply  19748  dvtaylp  19749  dvntaylp  19750  dvntaylp0  19751  taylthlem1  19752  taylthlem2  19753  ulmval  19759  ulmpm  19762  esumcvg  23454  iseupa  23881
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-pm 6775
  Copyright terms: Public domain W3C validator