Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpred Unicode version

Theorem elpred 24177
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.)
Hypothesis
Ref Expression
elpred.1  |-  Y  e. 
_V
Assertion
Ref Expression
elpred  |-  ( X  e.  D  ->  ( Y  e.  Pred ( R ,  A ,  X
)  <->  ( Y  e.  A  /\  Y R X ) ) )

Proof of Theorem elpred
StepHypRef Expression
1 df-pred 24168 . . 3  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  ( `' R " { X } ) )
21elin2 3359 . 2  |-  ( Y  e.  Pred ( R ,  A ,  X )  <->  ( Y  e.  A  /\  Y  e.  ( `' R " { X }
) ) )
3 elpred.1 . . . 4  |-  Y  e. 
_V
43eliniseg 5042 . . 3  |-  ( X  e.  D  ->  ( Y  e.  ( `' R " { X }
)  <->  Y R X ) )
54anbi2d 684 . 2  |-  ( X  e.  D  ->  (
( Y  e.  A  /\  Y  e.  ( `' R " { X } ) )  <->  ( Y  e.  A  /\  Y R X ) ) )
62, 5syl5bb 248 1  |-  ( X  e.  D  ->  ( Y  e.  Pred ( R ,  A ,  X
)  <->  ( Y  e.  A  /\  Y R X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   _Vcvv 2788   {csn 3640   class class class wbr 4023   `'ccnv 4688   "cima 4692   Predcpred 24167
This theorem is referenced by:  predreseq  24179  predpo  24184  setlikespec  24187  preddowncl  24196  preduz  24200  predfz  24203  wfrlem10  24265
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-pred 24168
  Copyright terms: Public domain W3C validator