MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpt Structured version   Unicode version

Theorem elpt 17604
Description: Elementhood in the bases of a product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
elpt  |-  ( S  e.  B  <->  E. h
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  S  =  X_ y  e.  A  ( h `  y ) ) )
Distinct variable groups:    g, h, w, x, y, z, A   
g, F, h, w, x, y, z    S, g, h, x
Allowed substitution hints:    B( x, y, z, w, g, h)    S( y, z, w)

Proof of Theorem elpt
StepHypRef Expression
1 ptbas.1 . . 3  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
21eleq2i 2500 . 2  |-  ( S  e.  B  <->  S  e.  { x  |  E. g
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  x  =  X_ y  e.  A  ( g `  y ) ) } )
3 simpr 448 . . . . 5  |-  ( ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) )  /\  S  =  X_ y  e.  A  ( g `  y ) )  ->  S  =  X_ y  e.  A  ( g `  y ) )
4 ixpexg 7086 . . . . . 6  |-  ( A. y  e.  A  (
g `  y )  e.  _V  ->  X_ y  e.  A  ( g `  y )  e.  _V )
5 fvex 5742 . . . . . . 7  |-  ( g `
 y )  e. 
_V
65a1i 11 . . . . . 6  |-  ( y  e.  A  ->  (
g `  y )  e.  _V )
74, 6mprg 2775 . . . . 5  |-  X_ y  e.  A  ( g `  y )  e.  _V
83, 7syl6eqel 2524 . . . 4  |-  ( ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) )  /\  S  =  X_ y  e.  A  ( g `  y ) )  ->  S  e.  _V )
98exlimiv 1644 . . 3  |-  ( E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  S  = 
X_ y  e.  A  ( g `  y
) )  ->  S  e.  _V )
10 eqeq1 2442 . . . . 5  |-  ( x  =  S  ->  (
x  =  X_ y  e.  A  ( g `  y )  <->  S  =  X_ y  e.  A  ( g `  y ) ) )
1110anbi2d 685 . . . 4  |-  ( x  =  S  ->  (
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  x  =  X_ y  e.  A  ( g `  y ) )  <->  ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  S  = 
X_ y  e.  A  ( g `  y
) ) ) )
1211exbidv 1636 . . 3  |-  ( x  =  S  ->  ( E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) )  <->  E. g
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  S  =  X_ y  e.  A  ( g `  y ) ) ) )
139, 12elab3 3089 . 2  |-  ( S  e.  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  <->  E. g
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  S  =  X_ y  e.  A  ( g `  y ) ) )
14 fneq1 5534 . . . . 5  |-  ( g  =  h  ->  (
g  Fn  A  <->  h  Fn  A ) )
15 fveq1 5727 . . . . . . 7  |-  ( g  =  h  ->  (
g `  y )  =  ( h `  y ) )
1615eleq1d 2502 . . . . . 6  |-  ( g  =  h  ->  (
( g `  y
)  e.  ( F `
 y )  <->  ( h `  y )  e.  ( F `  y ) ) )
1716ralbidv 2725 . . . . 5  |-  ( g  =  h  ->  ( A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  <->  A. y  e.  A  ( h `  y )  e.  ( F `  y ) ) )
1815eqeq1d 2444 . . . . . . 7  |-  ( g  =  h  ->  (
( g `  y
)  =  U. ( F `  y )  <->  ( h `  y )  =  U. ( F `
 y ) ) )
1918rexralbidv 2749 . . . . . 6  |-  ( g  =  h  ->  ( E. z  e.  Fin  A. y  e.  ( A 
\  z ) ( g `  y )  =  U. ( F `
 y )  <->  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( h `  y )  =  U. ( F `  y ) ) )
20 difeq2 3459 . . . . . . . 8  |-  ( z  =  w  ->  ( A  \  z )  =  ( A  \  w
) )
2120raleqdv 2910 . . . . . . 7  |-  ( z  =  w  ->  ( A. y  e.  ( A  \  z ) ( h `  y )  =  U. ( F `
 y )  <->  A. y  e.  ( A  \  w
) ( h `  y )  =  U. ( F `  y ) ) )
2221cbvrexv 2933 . . . . . 6  |-  ( E. z  e.  Fin  A. y  e.  ( A  \  z ) ( h `
 y )  = 
U. ( F `  y )  <->  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( h `  y )  =  U. ( F `  y ) )
2319, 22syl6bb 253 . . . . 5  |-  ( g  =  h  ->  ( E. z  e.  Fin  A. y  e.  ( A 
\  z ) ( g `  y )  =  U. ( F `
 y )  <->  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( h `  y )  =  U. ( F `  y ) ) )
2414, 17, 233anbi123d 1254 . . . 4  |-  ( g  =  h  ->  (
( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) )  <->  ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
) ) )
2515ixpeq2dv 7078 . . . . 5  |-  ( g  =  h  ->  X_ y  e.  A  ( g `  y )  =  X_ y  e.  A  (
h `  y )
)
2625eqeq2d 2447 . . . 4  |-  ( g  =  h  ->  ( S  =  X_ y  e.  A  ( g `  y )  <->  S  =  X_ y  e.  A  ( h `  y ) ) )
2724, 26anbi12d 692 . . 3  |-  ( g  =  h  ->  (
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  S  =  X_ y  e.  A  ( g `  y ) )  <->  ( ( h  Fn  A  /\  A. y  e.  A  (
h `  y )  e.  ( F `  y
)  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( h `  y )  =  U. ( F `  y ) )  /\  S  = 
X_ y  e.  A  ( h `  y
) ) ) )
2827cbvexv 1985 . 2  |-  ( E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  S  = 
X_ y  e.  A  ( g `  y
) )  <->  E. h
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  S  =  X_ y  e.  A  ( h `  y ) ) )
292, 13, 283bitri 263 1  |-  ( S  e.  B  <->  E. h
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  S  =  X_ y  e.  A  ( h `  y ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2422   A.wral 2705   E.wrex 2706   _Vcvv 2956    \ cdif 3317   U.cuni 4015    Fn wfn 5449   ` cfv 5454   X_cixp 7063   Fincfn 7109
This theorem is referenced by:  elptr  17605  ptbasin  17609  ptbasfi  17613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ixp 7064
  Copyright terms: Public domain W3C validator