MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elptr Unicode version

Theorem elptr 17374
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
elptr  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  X_ y  e.  A  ( G `  y )  e.  B
)
Distinct variable groups:    x, g,
y, G    z, g, A, x, y    g, F, x, y, z    g, V, x, y, z    y, W
Allowed substitution hints:    B( x, y, z, g)    G( z)    W( x, z, g)

Proof of Theorem elptr
Dummy variables  h  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 981 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  G  Fn  A )
2 simp1 955 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  A  e.  V )
3 fnex 5827 . . . 4  |-  ( ( G  Fn  A  /\  A  e.  V )  ->  G  e.  _V )
41, 2, 3syl2anc 642 . . 3  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  G  e.  _V )
5 simp2r 982 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )
6 difeq2 3364 . . . . . . 7  |-  ( w  =  W  ->  ( A  \  w )  =  ( A  \  W
) )
76raleqdv 2818 . . . . . 6  |-  ( w  =  W  ->  ( A. y  e.  ( A  \  w ) ( G `  y )  =  U. ( F `
 y )  <->  A. y  e.  ( A  \  W
) ( G `  y )  =  U. ( F `  y ) ) )
87rspcev 2960 . . . . 5  |-  ( ( W  e.  Fin  /\  A. y  e.  ( A 
\  W ) ( G `  y )  =  U. ( F `
 y ) )  ->  E. w  e.  Fin  A. y  e.  ( A 
\  w ) ( G `  y )  =  U. ( F `
 y ) )
983ad2ant3 978 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) )
101, 5, 93jca 1132 . . 3  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) ) )
11 fveq1 5607 . . . . . . . . 9  |-  ( h  =  G  ->  (
h `  y )  =  ( G `  y ) )
1211eqcomd 2363 . . . . . . . 8  |-  ( h  =  G  ->  ( G `  y )  =  ( h `  y ) )
1312ralrimivw 2703 . . . . . . 7  |-  ( h  =  G  ->  A. y  e.  A  ( G `  y )  =  ( h `  y ) )
14 ixpeq2 6918 . . . . . . 7  |-  ( A. y  e.  A  ( G `  y )  =  ( h `  y )  ->  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
)
1513, 14syl 15 . . . . . 6  |-  ( h  =  G  ->  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
)
1615biantrud 493 . . . . 5  |-  ( h  =  G  ->  (
( h  Fn  A  /\  A. y  e.  A  ( h `  y
)  e.  ( F `
 y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w ) ( h `
 y )  = 
U. ( F `  y ) )  <->  ( (
h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( h `  y )  =  U. ( F `  y ) )  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) ) )
17 fneq1 5415 . . . . . 6  |-  ( h  =  G  ->  (
h  Fn  A  <->  G  Fn  A ) )
1811eleq1d 2424 . . . . . . 7  |-  ( h  =  G  ->  (
( h `  y
)  e.  ( F `
 y )  <->  ( G `  y )  e.  ( F `  y ) ) )
1918ralbidv 2639 . . . . . 6  |-  ( h  =  G  ->  ( A. y  e.  A  ( h `  y
)  e.  ( F `
 y )  <->  A. y  e.  A  ( G `  y )  e.  ( F `  y ) ) )
2011eqeq1d 2366 . . . . . . 7  |-  ( h  =  G  ->  (
( h `  y
)  =  U. ( F `  y )  <->  ( G `  y )  =  U. ( F `
 y ) ) )
2120rexralbidv 2663 . . . . . 6  |-  ( h  =  G  ->  ( E. w  e.  Fin  A. y  e.  ( A 
\  w ) ( h `  y )  =  U. ( F `
 y )  <->  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) ) )
2217, 19, 213anbi123d 1252 . . . . 5  |-  ( h  =  G  ->  (
( h  Fn  A  /\  A. y  e.  A  ( h `  y
)  e.  ( F `
 y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w ) ( h `
 y )  = 
U. ( F `  y ) )  <->  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( G `  y
)  =  U. ( F `  y )
) ) )
2316, 22bitr3d 246 . . . 4  |-  ( h  =  G  ->  (
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
)  <->  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( G `  y
)  =  U. ( F `  y )
) ) )
2423spcegv 2945 . . 3  |-  ( G  e.  _V  ->  (
( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) )  ->  E. h
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) ) )
254, 10, 24sylc 56 . 2  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  E. h
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) )
26 ptbas.1 . . 3  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
2726elpt 17373 . 2  |-  ( X_ y  e.  A  ( G `  y )  e.  B  <->  E. h ( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( h `  y )  =  U. ( F `  y ) )  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) )
2825, 27sylibr 203 1  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  X_ y  e.  A  ( G `  y )  e.  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1541    = wceq 1642    e. wcel 1710   {cab 2344   A.wral 2619   E.wrex 2620   _Vcvv 2864    \ cdif 3225   U.cuni 3908    Fn wfn 5332   ` cfv 5337   X_cixp 6905   Fincfn 6951
This theorem is referenced by:  elptr2  17375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ixp 6906
  Copyright terms: Public domain W3C validator