Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwgdedVD Structured version   Unicode version

Theorem elpwgdedVD 28967
 Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived from elpwg 3799. In form of VD deduction with and as variable virtual hypothesis collections based on Mario Carneiro's metavariable concept. elpwgded 28589 is elpwgdedVD 28967 using conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpwgdedVD.1
elpwgdedVD.2
Assertion
Ref Expression
elpwgdedVD

Proof of Theorem elpwgdedVD
StepHypRef Expression
1 elpwgdedVD.1 . 2
2 elpwgdedVD.2 . 2
3 elpwg 3799 . . 3
43biimpar 472 . 2
51, 2, 4el12 28776 1
 Colors of variables: wff set class Syntax hints:   wcel 1725  cvv 2949   wss 3313  cpw 3792  wvd1 28598  wvhc2 28610 This theorem is referenced by:  sspwimpVD  28969 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2951  df-in 3320  df-ss 3327  df-pw 3794  df-vd1 28599  df-vhc2 28611
 Copyright terms: Public domain W3C validator