Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwgdedVD Structured version   Unicode version

Theorem elpwgdedVD 28967
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived from elpwg 3799. In form of VD deduction with  ph and  ps as variable virtual hypothesis collections based on Mario Carneiro's metavariable concept. elpwgded 28589 is elpwgdedVD 28967 using conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpwgdedVD.1  |-  (. ph  ->.  A  e.  _V ).
elpwgdedVD.2  |-  (. ps  ->.  A 
C_  B ).
Assertion
Ref Expression
elpwgdedVD  |-  (. (. ph ,. ps ).  ->.  A  e.  ~P B ).

Proof of Theorem elpwgdedVD
StepHypRef Expression
1 elpwgdedVD.1 . 2  |-  (. ph  ->.  A  e.  _V ).
2 elpwgdedVD.2 . 2  |-  (. ps  ->.  A 
C_  B ).
3 elpwg 3799 . . 3  |-  ( A  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
43biimpar 472 . 2  |-  ( ( A  e.  _V  /\  A  C_  B )  ->  A  e.  ~P B
)
51, 2, 4el12 28776 1  |-  (. (. ph ,. ps ).  ->.  A  e.  ~P B ).
Colors of variables: wff set class
Syntax hints:    e. wcel 1725   _Vcvv 2949    C_ wss 3313   ~Pcpw 3792   (.wvd1 28598   (.wvhc2 28610
This theorem is referenced by:  sspwimpVD  28969
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2951  df-in 3320  df-ss 3327  df-pw 3794  df-vd1 28599  df-vhc2 28611
  Copyright terms: Public domain W3C validator