Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwun Structured version   Unicode version

Theorem elpwun 4758
 Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.)
Hypothesis
Ref Expression
eldifpw.1
Assertion
Ref Expression
elpwun

Proof of Theorem elpwun
StepHypRef Expression
1 elex 2966 . 2
2 elex 2966 . . 3
3 eldifpw.1 . . . 4
4 difex2 4716 . . . 4
53, 4ax-mp 8 . . 3
62, 5sylibr 205 . 2
7 elpwg 3808 . . 3
8 difexg 4353 . . . . 5
9 elpwg 3808 . . . . 5
108, 9syl 16 . . . 4
11 uncom 3493 . . . . . 6
1211sseq2i 3375 . . . . 5
13 ssundif 3713 . . . . 5
1412, 13bitri 242 . . . 4
1510, 14syl6rbbr 257 . . 3
167, 15bitrd 246 . 2
171, 6, 16pm5.21nii 344 1
 Colors of variables: wff set class Syntax hints:   wb 178   wcel 1726  cvv 2958   cdif 3319   cun 3320   wss 3322  cpw 3801 This theorem is referenced by:  pwfilem  7403  elrfi  26750 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-pw 3803  df-sn 3822  df-pr 3823  df-uni 4018
 Copyright terms: Public domain W3C validator