MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwuni Unicode version

Theorem elpwuni 4005
Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
elpwuni  |-  ( B  e.  A  ->  ( A  C_  ~P B  <->  U. A  =  B ) )

Proof of Theorem elpwuni
StepHypRef Expression
1 sspwuni 4003 . 2  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
2 unissel 3872 . . . 4  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  =  B )
32expcom 424 . . 3  |-  ( B  e.  A  ->  ( U. A  C_  B  ->  U. A  =  B
) )
4 eqimss 3243 . . 3  |-  ( U. A  =  B  ->  U. A  C_  B )
53, 4impbid1 194 . 2  |-  ( B  e.  A  ->  ( U. A  C_  B  <->  U. A  =  B ) )
61, 5syl5bb 248 1  |-  ( B  e.  A  ->  ( A  C_  ~P B  <->  U. A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696    C_ wss 3165   ~Pcpw 3638   U.cuni 3843
This theorem is referenced by:  mreuni  13518  issgon  23499  br2base  23589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-v 2803  df-in 3172  df-ss 3179  df-pw 3640  df-uni 3844
  Copyright terms: Public domain W3C validator