Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqs Structured version   Unicode version

Theorem elqs 6959
 Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Hypothesis
Ref Expression
elqs.1
Assertion
Ref Expression
elqs
Distinct variable groups:   ,   ,   ,

Proof of Theorem elqs
StepHypRef Expression
1 elqs.1 . 2
2 elqsg 6958 . 2
31, 2ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wb 178   wceq 1653   wcel 1726  wrex 2708  cvv 2958  cec 6905  cqs 6906 This theorem is referenced by:  qsss  6967  qsid  6972  erovlem  7002  sylow2blem3  15258  divsabl  15482  cldsubg  18142  divstgplem  18152  prter2  26732 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-v 2960  df-qs 6913
 Copyright terms: Public domain W3C validator