MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrabf Unicode version

Theorem elrabf 2935
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
Hypotheses
Ref Expression
elrabf.1  |-  F/_ x A
elrabf.2  |-  F/_ x B
elrabf.3  |-  F/ x ps
elrabf.4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elrabf  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )

Proof of Theorem elrabf
StepHypRef Expression
1 elex 2809 . 2  |-  ( A  e.  { x  e.  B  |  ph }  ->  A  e.  _V )
2 elex 2809 . . 3  |-  ( A  e.  B  ->  A  e.  _V )
32adantr 451 . 2  |-  ( ( A  e.  B  /\  ps )  ->  A  e. 
_V )
4 df-rab 2565 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
54eleq2i 2360 . . 3  |-  ( A  e.  { x  e.  B  |  ph }  <->  A  e.  { x  |  ( x  e.  B  /\  ph ) } )
6 elrabf.1 . . . 4  |-  F/_ x A
7 elrabf.2 . . . . . 6  |-  F/_ x B
86, 7nfel 2440 . . . . 5  |-  F/ x  A  e.  B
9 elrabf.3 . . . . 5  |-  F/ x ps
108, 9nfan 1783 . . . 4  |-  F/ x
( A  e.  B  /\  ps )
11 eleq1 2356 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
12 elrabf.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
1311, 12anbi12d 691 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
146, 10, 13elabgf 2925 . . 3  |-  ( A  e.  _V  ->  ( A  e.  { x  |  ( x  e.  B  /\  ph ) } 
<->  ( A  e.  B  /\  ps ) ) )
155, 14syl5bb 248 . 2  |-  ( A  e.  _V  ->  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) ) )
161, 3, 15pm5.21nii 342 1  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   F/wnf 1534    = wceq 1632    e. wcel 1696   {cab 2282   F/_wnfc 2419   {crab 2560   _Vcvv 2801
This theorem is referenced by:  elrab  2936  rabxfrd  4571  onminsb  4606  nnawordex  6651  tskwe  7599  iundisj  18921  iundisjfi  23378  iundisjf  23380  sltval2  24381  nobndlem5  24421  rfcnpre3  27807  rfcnpre4  27808  stoweidlem16  27868  stoweidlem26  27878  stoweidlem27  27879  stoweidlem31  27883  stoweidlem34  27886  stoweidlem51  27903  stoweidlem52  27904  stoweidlem59  27911  bnj1388  29379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rab 2565  df-v 2803
  Copyright terms: Public domain W3C validator