MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrabsf Unicode version

Theorem elrabsf 3042
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2935 has implicit substitution). The hypothesis specifies that  x must not be a free variable in  B. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
elrabsf.1  |-  F/_ x B
Assertion
Ref Expression
elrabsf  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  [. A  /  x ]. ph ) )

Proof of Theorem elrabsf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3006 . 2  |-  ( y  =  A  ->  ( [. y  /  x ]. ph  <->  [. A  /  x ]. ph ) )
2 elrabsf.1 . . 3  |-  F/_ x B
3 nfcv 2432 . . 3  |-  F/_ y B
4 nfv 1609 . . 3  |-  F/ y
ph
5 nfsbc1v 3023 . . 3  |-  F/ x [. y  /  x ]. ph
6 sbceq1a 3014 . . 3  |-  ( x  =  y  ->  ( ph 
<-> 
[. y  /  x ]. ph ) )
72, 3, 4, 5, 6cbvrab 2799 . 2  |-  { x  e.  B  |  ph }  =  { y  e.  B  |  [. y  /  x ]. ph }
81, 7elrab2 2938 1  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1696   F/_wnfc 2419   {crab 2560   [.wsbc 3004
This theorem is referenced by:  onminesb  4605  ac6num  8122  tfisg  24275  wfisg  24280  frinsg  24316  rabrenfdioph  27000  mpt2xopovel  28202  bnj23  29060  bnj1204  29358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rab 2565  df-v 2803  df-sbc 3005
  Copyright terms: Public domain W3C validator