MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreal Structured version   Unicode version

Theorem elreal 9007
Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
elreal  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
Distinct variable group:    x, A

Proof of Theorem elreal
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-r 9001 . . 3  |-  RR  =  ( R.  X.  { 0R } )
21eleq2i 2501 . 2  |-  ( A  e.  RR  <->  A  e.  ( R.  X.  { 0R } ) )
3 elxp2 4897 . . 3  |-  ( A  e.  ( R.  X.  { 0R } )  <->  E. x  e.  R.  E. y  e. 
{ 0R } A  =  <. x ,  y
>. )
4 0r 8956 . . . . . . 7  |-  0R  e.  R.
54elexi 2966 . . . . . 6  |-  0R  e.  _V
6 opeq2 3986 . . . . . . 7  |-  ( y  =  0R  ->  <. x ,  y >.  =  <. x ,  0R >. )
76eqeq2d 2448 . . . . . 6  |-  ( y  =  0R  ->  ( A  =  <. x ,  y >.  <->  A  =  <. x ,  0R >. )
)
85, 7rexsn 3851 . . . . 5  |-  ( E. y  e.  { 0R } A  =  <. x ,  y >.  <->  A  =  <. x ,  0R >. )
9 eqcom 2439 . . . . 5  |-  ( A  =  <. x ,  0R >.  <->  <. x ,  0R >.  =  A )
108, 9bitri 242 . . . 4  |-  ( E. y  e.  { 0R } A  =  <. x ,  y >.  <->  <. x ,  0R >.  =  A
)
1110rexbii 2731 . . 3  |-  ( E. x  e.  R.  E. y  e.  { 0R } A  =  <. x ,  y >.  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
123, 11bitri 242 . 2  |-  ( A  e.  ( R.  X.  { 0R } )  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
132, 12bitri 242 1  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    = wceq 1653    e. wcel 1726   E.wrex 2707   {csn 3815   <.cop 3818    X. cxp 4877   R.cnr 8743   0Rc0r 8744   RRcr 8990
This theorem is referenced by:  axaddrcl  9028  axmulrcl  9030  axrrecex  9039  axpre-lttri  9041  axpre-lttrn  9042  axpre-ltadd  9043  axpre-mulgt0  9044
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-omul 6730  df-er 6906  df-ec 6908  df-qs 6912  df-ni 8750  df-pli 8751  df-mi 8752  df-lti 8753  df-plpq 8786  df-mpq 8787  df-ltpq 8788  df-enq 8789  df-nq 8790  df-erq 8791  df-plq 8792  df-mq 8793  df-1nq 8794  df-rq 8795  df-ltnq 8796  df-np 8859  df-1p 8860  df-enr 8935  df-nr 8936  df-0r 8940  df-r 9001
  Copyright terms: Public domain W3C validator