MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrel Unicode version

Theorem elrel 4892
Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
elrel  |-  ( ( Rel  R  /\  A  e.  R )  ->  E. x E. y  A  =  <. x ,  y >.
)
Distinct variable group:    x, y, A
Allowed substitution hints:    R( x, y)

Proof of Theorem elrel
StepHypRef Expression
1 df-rel 4799 . . . 4  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 186 . . 3  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32sselda 3266 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  ( _V  X.  _V ) )
4 elvv 4851 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
53, 4sylib 188 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  E. x E. y  A  =  <. x ,  y >.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1546    = wceq 1647    e. wcel 1715   _Vcvv 2873    C_ wss 3238   <.cop 3732    X. cxp 4790   Rel wrel 4797
This theorem is referenced by:  eliunxp  4926  elres  5093  unielrel  5300  frxp  6353  rntpos  6389  gsum2d2lem  15434  dfpo2  24938  fundmpss  24948  elfuns  25280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-v 2875  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-opab 4180  df-xp 4798  df-rel 4799
  Copyright terms: Public domain W3C validator