MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreldm Unicode version

Theorem elreldm 5006
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
elreldm  |-  ( ( Rel  A  /\  B  e.  A )  ->  |^| |^| B  e.  dom  A )

Proof of Theorem elreldm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rel 4799 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
2 ssel 3260 . . . . 5  |-  ( A 
C_  ( _V  X.  _V )  ->  ( B  e.  A  ->  B  e.  ( _V  X.  _V ) ) )
31, 2sylbi 187 . . . 4  |-  ( Rel 
A  ->  ( B  e.  A  ->  B  e.  ( _V  X.  _V ) ) )
4 elvv 4851 . . . 4  |-  ( B  e.  ( _V  X.  _V )  <->  E. x E. y  B  =  <. x ,  y >. )
53, 4syl6ib 217 . . 3  |-  ( Rel 
A  ->  ( B  e.  A  ->  E. x E. y  B  =  <. x ,  y >.
) )
6 eleq1 2426 . . . . . 6  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  <->  <. x ,  y
>.  e.  A ) )
7 vex 2876 . . . . . . 7  |-  x  e. 
_V
8 vex 2876 . . . . . . 7  |-  y  e. 
_V
97, 8opeldm 4985 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
106, 9syl6bi 219 . . . . 5  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  x  e.  dom  A ) )
11 inteq 3967 . . . . . . . 8  |-  ( B  =  <. x ,  y
>.  ->  |^| B  =  |^| <.
x ,  y >.
)
1211inteqd 3969 . . . . . . 7  |-  ( B  =  <. x ,  y
>.  ->  |^| |^| B  =  |^| |^|
<. x ,  y >.
)
137, 8op1stb 4672 . . . . . . 7  |-  |^| |^| <. x ,  y >.  =  x
1412, 13syl6eq 2414 . . . . . 6  |-  ( B  =  <. x ,  y
>.  ->  |^| |^| B  =  x )
1514eleq1d 2432 . . . . 5  |-  ( B  =  <. x ,  y
>.  ->  ( |^| |^| B  e.  dom  A  <->  x  e.  dom  A ) )
1610, 15sylibrd 225 . . . 4  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
1716exlimivv 1640 . . 3  |-  ( E. x E. y  B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
185, 17syli 33 . 2  |-  ( Rel 
A  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
1918imp 418 1  |-  ( ( Rel  A  /\  B  e.  A )  ->  |^| |^| B  e.  dom  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1546    = wceq 1647    e. wcel 1715   _Vcvv 2873    C_ wss 3238   <.cop 3732   |^|cint 3964    X. cxp 4790   dom cdm 4792   Rel wrel 4797
This theorem is referenced by:  1stdm  6294  fundmen  7077
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rab 2637  df-v 2875  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-int 3965  df-br 4126  df-opab 4180  df-xp 4798  df-rel 4799  df-dm 4802
  Copyright terms: Public domain W3C validator