MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrest Unicode version

Theorem elrest 13332
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrest  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
Distinct variable groups:    x, A    x, B    x, J
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem elrest
StepHypRef Expression
1 restval 13331 . . 3  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( Jt  B )  =  ran  ( x  e.  J  |->  ( x  i^i  B
) ) )
21eleq2d 2350 . 2  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  A  e.  ran  ( x  e.  J  |->  ( x  i^i  B
) ) ) )
3 eqid 2283 . . 3  |-  ( x  e.  J  |->  ( x  i^i  B ) )  =  ( x  e.  J  |->  ( x  i^i 
B ) )
4 vex 2791 . . . 4  |-  x  e. 
_V
54inex1 4155 . . 3  |-  ( x  i^i  B )  e. 
_V
63, 5elrnmpti 4930 . 2  |-  ( A  e.  ran  ( x  e.  J  |->  ( x  i^i  B ) )  <->  E. x  e.  J  A  =  ( x  i^i  B ) )
72, 6syl6bb 252 1  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544    i^i cin 3151    e. cmpt 4077   ran crn 4690  (class class class)co 5858   ↾t crest 13325
This theorem is referenced by:  elrestr  13333  restsspw  13336  firest  13337  restbas  16889  restsn  16901  restcld  16903  restopnb  16906  ssrest  16907  restntr  16912  cnrest2  17014  cnpresti  17016  cnprest  17017  cnprest2  17018  lmss  17026  cmpsublem  17126  cmpsub  17127  consuba  17146  1stcrest  17179  subislly  17207  cldllycmp  17221  txrest  17325  trfbas2  17538  trfbas  17539  trfil2  17582  flimrest  17678  fclsrest  17719  tsmssubm  17825  metrest  18070  xrtgioo  18312  xrge0tsms  18339  icoopnst  18437  iocopnst  18438  subopnmbl  18959  mbfimaopn2  19012  xrlimcnp  20263  xrge0tsmsd  23382  islimrs3  25581  islimrs4  25582
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-rest 13327
  Copyright terms: Public domain W3C validator