Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfi Unicode version

Theorem elrfi 26769
Description: Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfi  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) )
Distinct variable groups:    v, A    v, B    v, C    v, V

Proof of Theorem elrfi
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 2796 . . 3  |-  ( A  e.  ( fi `  ( { B }  u.  C ) )  ->  A  e.  _V )
21a1i 10 . 2  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  ->  A  e.  _V ) )
3 inex1g 4157 . . . . 5  |-  ( B  e.  V  ->  ( B  i^i  |^| v )  e. 
_V )
4 eleq1 2343 . . . . 5  |-  ( A  =  ( B  i^i  |^| v )  ->  ( A  e.  _V  <->  ( B  i^i  |^| v )  e. 
_V ) )
53, 4syl5ibrcom 213 . . . 4  |-  ( B  e.  V  ->  ( A  =  ( B  i^i  |^| v )  ->  A  e.  _V )
)
65rexlimdvw 2670 . . 3  |-  ( B  e.  V  ->  ( E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v )  ->  A  e.  _V )
)
76adantr 451 . 2  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
)  ->  A  e.  _V ) )
8 simpr 447 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  A  e. 
_V )
9 snex 4216 . . . . . 6  |-  { B }  e.  _V
10 simplr 731 . . . . . . 7  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  C  C_  ~P B )
11 pwexg 4194 . . . . . . . 8  |-  ( B  e.  V  ->  ~P B  e.  _V )
1211ad2antrr 706 . . . . . . 7  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ~P B  e.  _V )
13 ssexg 4160 . . . . . . 7  |-  ( ( C  C_  ~P B  /\  ~P B  e.  _V )  ->  C  e.  _V )
1410, 12, 13syl2anc 642 . . . . . 6  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  C  e. 
_V )
15 unexg 4521 . . . . . 6  |-  ( ( { B }  e.  _V  /\  C  e.  _V )  ->  ( { B }  u.  C )  e.  _V )
169, 14, 15sylancr 644 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( { B }  u.  C
)  e.  _V )
17 elfi 7167 . . . . 5  |-  ( ( A  e.  _V  /\  ( { B }  u.  C )  e.  _V )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin ) A  =  |^| w ) )
188, 16, 17syl2anc 642 . . . 4  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( A  e.  ( fi `  ( { B }  u.  C ) )  <->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin ) A  =  |^| w ) )
19 inss1 3389 . . . . . . . . . . . . 13  |-  ( ~P ( { B }  u.  C )  i^i  Fin )  C_  ~P ( { B }  u.  C
)
20 uncom 3319 . . . . . . . . . . . . . 14  |-  ( { B }  u.  C
)  =  ( C  u.  { B }
)
2120pweqi 3629 . . . . . . . . . . . . 13  |-  ~P ( { B }  u.  C
)  =  ~P ( C  u.  { B } )
2219, 21sseqtri 3210 . . . . . . . . . . . 12  |-  ( ~P ( { B }  u.  C )  i^i  Fin )  C_  ~P ( C  u.  { B }
)
2322sseli 3176 . . . . . . . . . . 11  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  e.  ~P ( C  u.  { B } ) )
249elpwun 4567 . . . . . . . . . . 11  |-  ( w  e.  ~P ( C  u.  { B }
)  <->  ( w  \  { B } )  e. 
~P C )
2523, 24sylib 188 . . . . . . . . . 10  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  ( w  \  { B } )  e.  ~P C )
2625ad2antrl 708 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( w  \  { B } )  e.  ~P C )
27 inss2 3390 . . . . . . . . . . . 12  |-  ( ~P ( { B }  u.  C )  i^i  Fin )  C_  Fin
2827sseli 3176 . . . . . . . . . . 11  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  e.  Fin )
29 diffi 7089 . . . . . . . . . . 11  |-  ( w  e.  Fin  ->  (
w  \  { B } )  e.  Fin )
3028, 29syl 15 . . . . . . . . . 10  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  ( w  \  { B } )  e.  Fin )
3130ad2antrl 708 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( w  \  { B } )  e.  Fin )
32 elin 3358 . . . . . . . . 9  |-  ( ( w  \  { B } )  e.  ( ~P C  i^i  Fin ) 
<->  ( ( w  \  { B } )  e. 
~P C  /\  (
w  \  { B } )  e.  Fin ) )
3326, 31, 32sylanbrc 645 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( w  \  { B } )  e.  ( ~P C  i^i  Fin ) )
34 incom 3361 . . . . . . . . . . . . 13  |-  ( B  i^i  A )  =  ( A  i^i  B
)
35 simprr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  |^| w )
36 simplr 731 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  e.  _V )
3735, 36eqeltrrd 2358 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| w  e.  _V )
38 intex 4167 . . . . . . . . . . . . . . . . . 18  |-  ( w  =/=  (/)  <->  |^| w  e.  _V )
3937, 38sylibr 203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  w  =/=  (/) )
40 intssuni 3884 . . . . . . . . . . . . . . . . 17  |-  ( w  =/=  (/)  ->  |^| w  C_  U. w )
4139, 40syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| w  C_  U. w
)
4219sseli 3176 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  e.  ~P ( { B }  u.  C
) )
43 elpwi 3633 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  ~P ( { B }  u.  C
)  ->  w  C_  ( { B }  u.  C
) )
4442, 43syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  C_  ( { B }  u.  C
) )
4544ad2antrl 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  w  C_  ( { B }  u.  C )
)
46 pwidg 3637 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  V  ->  B  e.  ~P B )
4746snssd 3760 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  V  ->  { B }  C_  ~P B )
4847adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  { B }  C_ 
~P B )
49 simpr 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  C  C_  ~P B )
5048, 49unssd 3351 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( { B }  u.  C )  C_ 
~P B )
5150ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( { B }  u.  C )  C_  ~P B )
5245, 51sstrd 3189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  w  C_  ~P B )
53 sspwuni 3987 . . . . . . . . . . . . . . . . 17  |-  ( w 
C_  ~P B  <->  U. w  C_  B )
5452, 53sylib 188 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  U. w  C_  B )
5541, 54sstrd 3189 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| w  C_  B )
5635, 55eqsstrd 3212 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  C_  B )
57 df-ss 3166 . . . . . . . . . . . . . 14  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
5856, 57sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( A  i^i  B
)  =  A )
5934, 58syl5req 2328 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  ( B  i^i  A ) )
60 ineq2 3364 . . . . . . . . . . . . 13  |-  ( A  =  |^| w  -> 
( B  i^i  A
)  =  ( B  i^i  |^| w ) )
6160ad2antll 709 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( B  i^i  A
)  =  ( B  i^i  |^| w ) )
6259, 61eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  ( B  i^i  |^| w ) )
63 intun 3894 . . . . . . . . . . . . 13  |-  |^| ( { B }  u.  w
)  =  ( |^| { B }  i^i  |^| w )
64 intsng 3897 . . . . . . . . . . . . . 14  |-  ( B  e.  V  ->  |^| { B }  =  B )
6564ineq1d 3369 . . . . . . . . . . . . 13  |-  ( B  e.  V  ->  ( |^| { B }  i^i  |^| w )  =  ( B  i^i  |^| w
) )
6663, 65syl5req 2328 . . . . . . . . . . . 12  |-  ( B  e.  V  ->  ( B  i^i  |^| w )  = 
|^| ( { B }  u.  w )
)
6766ad3antrrr 710 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( B  i^i  |^| w )  =  |^| ( { B }  u.  w ) )
6862, 67eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  |^| ( { B }  u.  w
) )
69 undif2 3530 . . . . . . . . . . 11  |-  ( { B }  u.  (
w  \  { B } ) )  =  ( { B }  u.  w )
7069inteqi 3866 . . . . . . . . . 10  |-  |^| ( { B }  u.  (
w  \  { B } ) )  = 
|^| ( { B }  u.  w )
7168, 70syl6eqr 2333 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  |^| ( { B }  u.  (
w  \  { B } ) ) )
72 intun 3894 . . . . . . . . . . 11  |-  |^| ( { B }  u.  (
w  \  { B } ) )  =  ( |^| { B }  i^i  |^| ( w  \  { B } ) )
7364ineq1d 3369 . . . . . . . . . . 11  |-  ( B  e.  V  ->  ( |^| { B }  i^i  |^| ( w  \  { B } ) )  =  ( B  i^i  |^| ( w  \  { B } ) ) )
7472, 73syl5eq 2327 . . . . . . . . . 10  |-  ( B  e.  V  ->  |^| ( { B }  u.  (
w  \  { B } ) )  =  ( B  i^i  |^| ( w  \  { B } ) ) )
7574ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| ( { B }  u.  ( w  \  { B } ) )  =  ( B  i^i  |^| ( w  \  { B } ) ) )
7671, 75eqtrd 2315 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  ( B  i^i  |^| ( w  \  { B } ) ) )
77 inteq 3865 . . . . . . . . . . 11  |-  ( v  =  ( w  \  { B } )  ->  |^| v  =  |^| ( w  \  { B } ) )
7877ineq2d 3370 . . . . . . . . . 10  |-  ( v  =  ( w  \  { B } )  -> 
( B  i^i  |^| v )  =  ( B  i^i  |^| (
w  \  { B } ) ) )
7978eqeq2d 2294 . . . . . . . . 9  |-  ( v  =  ( w  \  { B } )  -> 
( A  =  ( B  i^i  |^| v
)  <->  A  =  ( B  i^i  |^| ( w  \  { B } ) ) ) )
8079rspcev 2884 . . . . . . . 8  |-  ( ( ( w  \  { B } )  e.  ( ~P C  i^i  Fin )  /\  A  =  ( B  i^i  |^| (
w  \  { B } ) ) )  ->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) )
8133, 76, 80syl2anc 642 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) )
8281expr 598 . . . . . 6  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )
)  ->  ( A  =  |^| w  ->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) )
8382rexlimdva 2667 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w  ->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) ) )
84 ssun1 3338 . . . . . . . . . . . 12  |-  { B }  C_  ( { B }  u.  C )
8584a1i 10 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  { B }  C_  ( { B }  u.  C )
)
86 inss1 3389 . . . . . . . . . . . . . 14  |-  ( ~P C  i^i  Fin )  C_ 
~P C
8786sseli 3176 . . . . . . . . . . . . 13  |-  ( v  e.  ( ~P C  i^i  Fin )  ->  v  e.  ~P C )
88 elpwi 3633 . . . . . . . . . . . . 13  |-  ( v  e.  ~P C  -> 
v  C_  C )
89 ssun4 3341 . . . . . . . . . . . . 13  |-  ( v 
C_  C  ->  v  C_  ( { B }  u.  C ) )
9087, 88, 893syl 18 . . . . . . . . . . . 12  |-  ( v  e.  ( ~P C  i^i  Fin )  ->  v  C_  ( { B }  u.  C ) )
9190adantl 452 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  v  C_  ( { B }  u.  C ) )
9285, 91unssd 3351 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  C_  ( { B }  u.  C
) )
93 vex 2791 . . . . . . . . . . . 12  |-  v  e. 
_V
949, 93unex 4518 . . . . . . . . . . 11  |-  ( { B }  u.  v
)  e.  _V
9594elpw 3631 . . . . . . . . . 10  |-  ( ( { B }  u.  v )  e.  ~P ( { B }  u.  C )  <->  ( { B }  u.  v
)  C_  ( { B }  u.  C
) )
9692, 95sylibr 203 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  e.  ~P ( { B }  u.  C
) )
97 snfi 6941 . . . . . . . . . 10  |-  { B }  e.  Fin
98 inss2 3390 . . . . . . . . . . . 12  |-  ( ~P C  i^i  Fin )  C_ 
Fin
9998sseli 3176 . . . . . . . . . . 11  |-  ( v  e.  ( ~P C  i^i  Fin )  ->  v  e.  Fin )
10099adantl 452 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  v  e.  Fin )
101 unfi 7124 . . . . . . . . . 10  |-  ( ( { B }  e.  Fin  /\  v  e.  Fin )  ->  ( { B }  u.  v )  e.  Fin )
10297, 100, 101sylancr 644 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  e.  Fin )
103 elin 3358 . . . . . . . . 9  |-  ( ( { B }  u.  v )  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  <->  ( ( { B }  u.  v
)  e.  ~P ( { B }  u.  C
)  /\  ( { B }  u.  v
)  e.  Fin )
)
10496, 102, 103sylanbrc 645 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) )
10564eqcomd 2288 . . . . . . . . . . 11  |-  ( B  e.  V  ->  B  =  |^| { B }
)
106105ineq1d 3369 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( B  i^i  |^| v )  =  ( |^| { B }  i^i  |^| v ) )
107 intun 3894 . . . . . . . . . 10  |-  |^| ( { B }  u.  v
)  =  ( |^| { B }  i^i  |^| v )
108106, 107syl6eqr 2333 . . . . . . . . 9  |-  ( B  e.  V  ->  ( B  i^i  |^| v )  = 
|^| ( { B }  u.  v )
)
109108ad3antrrr 710 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( B  i^i  |^| v )  = 
|^| ( { B }  u.  v )
)
110 inteq 3865 . . . . . . . . . 10  |-  ( w  =  ( { B }  u.  v )  ->  |^| w  =  |^| ( { B }  u.  v ) )
111110eqeq2d 2294 . . . . . . . . 9  |-  ( w  =  ( { B }  u.  v )  ->  ( ( B  i^i  |^| v )  =  |^| w 
<->  ( B  i^i  |^| v )  =  |^| ( { B }  u.  v ) ) )
112111rspcev 2884 . . . . . . . 8  |-  ( ( ( { B }  u.  v )  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  ( B  i^i  |^| v )  = 
|^| ( { B }  u.  v )
)  ->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )
( B  i^i  |^| v )  =  |^| w )
113104, 109, 112syl2anc 642 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )
( B  i^i  |^| v )  =  |^| w )
114 eqeq1 2289 . . . . . . . 8  |-  ( A  =  ( B  i^i  |^| v )  ->  ( A  =  |^| w  <->  ( B  i^i  |^| v )  = 
|^| w ) )
115114rexbidv 2564 . . . . . . 7  |-  ( A  =  ( B  i^i  |^| v )  ->  ( E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w 
<->  E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) ( B  i^i  |^| v )  = 
|^| w ) )
116113, 115syl5ibrcom 213 . . . . . 6  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( A  =  ( B  i^i  |^| v )  ->  E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w ) )
117116rexlimdva 2667 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v )  ->  E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w ) )
11883, 117impbid 183 . . . 4  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w 
<->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) ) )
11918, 118bitrd 244 . . 3  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( A  e.  ( fi `  ( { B }  u.  C ) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) )
120119ex 423 . 2  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e. 
_V  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) ) )
1212, 7, 120pm5.21ndd 343 1  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827   |^|cint 3862   ` cfv 5255   Fincfn 6863   ficfi 7164
This theorem is referenced by:  elrfirn  26770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-fin 6867  df-fi 7165
  Copyright terms: Public domain W3C validator