Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn Structured version   Unicode version

Theorem elrfirn 26740
Description: Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn  |-  ( ( B  e.  V  /\  F : I --> ~P B
)  ->  ( A  e.  ( fi `  ( { B }  u.  ran  F ) )  <->  E. v  e.  ( ~P I  i^i 
Fin ) A  =  ( B  i^i  |^|_ y  e.  v  ( F `  y )
) ) )
Distinct variable groups:    v, A    v, B    v, F, y   
v, I    v, V    y, v
Allowed substitution hints:    A( y)    B( y)    I( y)    V( y)

Proof of Theorem elrfirn
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 frn 5589 . . 3  |-  ( F : I --> ~P B  ->  ran  F  C_  ~P B )
2 elrfi 26739 . . 3  |-  ( ( B  e.  V  /\  ran  F  C_  ~P B
)  ->  ( A  e.  ( fi `  ( { B }  u.  ran  F ) )  <->  E. w  e.  ( ~P ran  F  i^i  Fin ) A  =  ( B  i^i  |^| w ) ) )
31, 2sylan2 461 . 2  |-  ( ( B  e.  V  /\  F : I --> ~P B
)  ->  ( A  e.  ( fi `  ( { B }  u.  ran  F ) )  <->  E. w  e.  ( ~P ran  F  i^i  Fin ) A  =  ( B  i^i  |^| w ) ) )
4 imassrn 5208 . . . . . 6  |-  ( F
" v )  C_  ran  F
5 pwexg 4375 . . . . . . . 8  |-  ( B  e.  V  ->  ~P B  e.  _V )
6 ssexg 4341 . . . . . . . 8  |-  ( ( ran  F  C_  ~P B  /\  ~P B  e. 
_V )  ->  ran  F  e.  _V )
71, 5, 6syl2anr 465 . . . . . . 7  |-  ( ( B  e.  V  /\  F : I --> ~P B
)  ->  ran  F  e. 
_V )
8 elpw2g 4355 . . . . . . 7  |-  ( ran 
F  e.  _V  ->  ( ( F " v
)  e.  ~P ran  F  <-> 
( F " v
)  C_  ran  F ) )
97, 8syl 16 . . . . . 6  |-  ( ( B  e.  V  /\  F : I --> ~P B
)  ->  ( ( F " v )  e. 
~P ran  F  <->  ( F " v )  C_  ran  F ) )
104, 9mpbiri 225 . . . . 5  |-  ( ( B  e.  V  /\  F : I --> ~P B
)  ->  ( F " v )  e.  ~P ran  F )
1110adantr 452 . . . 4  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  ( F " v )  e. 
~P ran  F )
12 ffun 5585 . . . . . 6  |-  ( F : I --> ~P B  ->  Fun  F )
1312ad2antlr 708 . . . . 5  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  Fun  F )
14 inss2 3554 . . . . . . 7  |-  ( ~P I  i^i  Fin )  C_ 
Fin
1514sseli 3336 . . . . . 6  |-  ( v  e.  ( ~P I  i^i  Fin )  ->  v  e.  Fin )
1615adantl 453 . . . . 5  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  v  e.  Fin )
17 imafi 7391 . . . . 5  |-  ( ( Fun  F  /\  v  e.  Fin )  ->  ( F " v )  e. 
Fin )
1813, 16, 17syl2anc 643 . . . 4  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  ( F " v )  e. 
Fin )
19 elin 3522 . . . 4  |-  ( ( F " v )  e.  ( ~P ran  F  i^i  Fin )  <->  ( ( F " v )  e. 
~P ran  F  /\  ( F " v )  e.  Fin ) )
2011, 18, 19sylanbrc 646 . . 3  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  ( F " v )  e.  ( ~P ran  F  i^i  Fin ) )
21 ffn 5583 . . . . . 6  |-  ( F : I --> ~P B  ->  F  Fn  I )
2221ad2antlr 708 . . . . 5  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  w  e.  ( ~P ran  F  i^i  Fin ) )  ->  F  Fn  I )
23 inss1 3553 . . . . . . . 8  |-  ( ~P
ran  F  i^i  Fin )  C_ 
~P ran  F
2423sseli 3336 . . . . . . 7  |-  ( w  e.  ( ~P ran  F  i^i  Fin )  ->  w  e.  ~P ran  F )
2524elpwid 3800 . . . . . 6  |-  ( w  e.  ( ~P ran  F  i^i  Fin )  ->  w  C_  ran  F )
2625adantl 453 . . . . 5  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  w  e.  ( ~P ran  F  i^i  Fin ) )  ->  w  C_ 
ran  F )
27 inss2 3554 . . . . . . 7  |-  ( ~P
ran  F  i^i  Fin )  C_ 
Fin
2827sseli 3336 . . . . . 6  |-  ( w  e.  ( ~P ran  F  i^i  Fin )  ->  w  e.  Fin )
2928adantl 453 . . . . 5  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  w  e.  ( ~P ran  F  i^i  Fin ) )  ->  w  e.  Fin )
30 fipreima 7404 . . . . 5  |-  ( ( F  Fn  I  /\  w  C_  ran  F  /\  w  e.  Fin )  ->  E. v  e.  ( ~P I  i^i  Fin ) ( F "
v )  =  w )
3122, 26, 29, 30syl3anc 1184 . . . 4  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  w  e.  ( ~P ran  F  i^i  Fin ) )  ->  E. v  e.  ( ~P I  i^i 
Fin ) ( F
" v )  =  w )
32 eqcom 2437 . . . . 5  |-  ( ( F " v )  =  w  <->  w  =  ( F " v ) )
3332rexbii 2722 . . . 4  |-  ( E. v  e.  ( ~P I  i^i  Fin )
( F " v
)  =  w  <->  E. v  e.  ( ~P I  i^i 
Fin ) w  =  ( F " v
) )
3431, 33sylib 189 . . 3  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  w  e.  ( ~P ran  F  i^i  Fin ) )  ->  E. v  e.  ( ~P I  i^i 
Fin ) w  =  ( F " v
) )
35 inteq 4045 . . . . . 6  |-  ( w  =  ( F "
v )  ->  |^| w  =  |^| ( F "
v ) )
3635ineq2d 3534 . . . . 5  |-  ( w  =  ( F "
v )  ->  ( B  i^i  |^| w )  =  ( B  i^i  |^| ( F " v ) ) )
3736eqeq2d 2446 . . . 4  |-  ( w  =  ( F "
v )  ->  ( A  =  ( B  i^i  |^| w )  <->  A  =  ( B  i^i  |^| ( F " v ) ) ) )
3837adantl 453 . . 3  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  w  =  ( F " v ) )  ->  ( A  =  ( B  i^i  |^| w )  <->  A  =  ( B  i^i  |^| ( F " v ) ) ) )
3920, 34, 38rexxfrd 4730 . 2  |-  ( ( B  e.  V  /\  F : I --> ~P B
)  ->  ( E. w  e.  ( ~P ran  F  i^i  Fin ) A  =  ( B  i^i  |^| w )  <->  E. v  e.  ( ~P I  i^i 
Fin ) A  =  ( B  i^i  |^| ( F " v ) ) ) )
4021ad2antlr 708 . . . . . . 7  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  F  Fn  I )
41 inss1 3553 . . . . . . . . . 10  |-  ( ~P I  i^i  Fin )  C_ 
~P I
4241sseli 3336 . . . . . . . . 9  |-  ( v  e.  ( ~P I  i^i  Fin )  ->  v  e.  ~P I )
4342elpwid 3800 . . . . . . . 8  |-  ( v  e.  ( ~P I  i^i  Fin )  ->  v  C_  I )
4443adantl 453 . . . . . . 7  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  v  C_  I )
45 imaiinfv 26731 . . . . . . 7  |-  ( ( F  Fn  I  /\  v  C_  I )  ->  |^|_ y  e.  v  ( F `  y )  =  |^| ( F
" v ) )
4640, 44, 45syl2anc 643 . . . . . 6  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  |^|_ y  e.  v  ( F `  y )  =  |^| ( F " v ) )
4746eqcomd 2440 . . . . 5  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  |^| ( F " v )  = 
|^|_ y  e.  v  ( F `  y
) )
4847ineq2d 3534 . . . 4  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  ( B  i^i  |^| ( F "
v ) )  =  ( B  i^i  |^|_ y  e.  v  ( F `  y )
) )
4948eqeq2d 2446 . . 3  |-  ( ( ( B  e.  V  /\  F : I --> ~P B
)  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  ( A  =  ( B  i^i  |^| ( F "
v ) )  <->  A  =  ( B  i^i  |^|_ y  e.  v  ( F `  y ) ) ) )
5049rexbidva 2714 . 2  |-  ( ( B  e.  V  /\  F : I --> ~P B
)  ->  ( E. v  e.  ( ~P I  i^i  Fin ) A  =  ( B  i^i  |^| ( F " v
) )  <->  E. v  e.  ( ~P I  i^i 
Fin ) A  =  ( B  i^i  |^|_ y  e.  v  ( F `  y )
) ) )
513, 39, 503bitrd 271 1  |-  ( ( B  e.  V  /\  F : I --> ~P B
)  ->  ( A  e.  ( fi `  ( { B }  u.  ran  F ) )  <->  E. v  e.  ( ~P I  i^i 
Fin ) A  =  ( B  i^i  |^|_ y  e.  v  ( F `  y )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698   _Vcvv 2948    u. cun 3310    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   {csn 3806   |^|cint 4042   |^|_ciin 4086   ran crn 4871   "cima 4873   Fun wfun 5440    Fn wfn 5441   -->wf 5442   ` cfv 5446   Fincfn 7101   ficfi 7407
This theorem is referenced by:  elrfirn2  26741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-fin 7105  df-fi 7408
  Copyright terms: Public domain W3C validator