Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn2 Unicode version

Theorem elrfirn2 26771
Description: Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn2  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  -> 
( A  e.  ( fi `  ( { B }  u.  ran  ( y  e.  I  |->  C ) ) )  <->  E. v  e.  ( ~P I  i^i  Fin ) A  =  ( B  i^i  |^|_ y  e.  v  C ) ) )
Distinct variable groups:    v, A    v, B, y    v, C   
v, I, y    v, V, y
Allowed substitution hints:    A( y)    C( y)

Proof of Theorem elrfirn2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elpw2g 4174 . . . . . . 7  |-  ( B  e.  V  ->  ( C  e.  ~P B  <->  C 
C_  B ) )
21biimprd 214 . . . . . 6  |-  ( B  e.  V  ->  ( C  C_  B  ->  C  e.  ~P B ) )
32ralimdv 2622 . . . . 5  |-  ( B  e.  V  ->  ( A. y  e.  I  C  C_  B  ->  A. y  e.  I  C  e.  ~P B ) )
43imp 418 . . . 4  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  ->  A. y  e.  I  C  e.  ~P B
)
5 eqid 2283 . . . . 5  |-  ( y  e.  I  |->  C )  =  ( y  e.  I  |->  C )
65fmpt 5681 . . . 4  |-  ( A. y  e.  I  C  e.  ~P B  <->  ( y  e.  I  |->  C ) : I --> ~P B
)
74, 6sylib 188 . . 3  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  -> 
( y  e.  I  |->  C ) : I --> ~P B )
8 elrfirn 26770 . . 3  |-  ( ( B  e.  V  /\  ( y  e.  I  |->  C ) : I --> ~P B )  -> 
( A  e.  ( fi `  ( { B }  u.  ran  ( y  e.  I  |->  C ) ) )  <->  E. v  e.  ( ~P I  i^i  Fin ) A  =  ( B  i^i  |^|_ z  e.  v  ( ( y  e.  I  |->  C ) `  z ) ) ) )
97, 8syldan 456 . 2  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  -> 
( A  e.  ( fi `  ( { B }  u.  ran  ( y  e.  I  |->  C ) ) )  <->  E. v  e.  ( ~P I  i^i  Fin ) A  =  ( B  i^i  |^|_ z  e.  v  ( ( y  e.  I  |->  C ) `  z ) ) ) )
10 inss1 3389 . . . . . 6  |-  ( ~P I  i^i  Fin )  C_ 
~P I
1110sseli 3176 . . . . 5  |-  ( v  e.  ( ~P I  i^i  Fin )  ->  v  e.  ~P I )
12 elpwi 3633 . . . . 5  |-  ( v  e.  ~P I  -> 
v  C_  I )
1311, 12syl 15 . . . 4  |-  ( v  e.  ( ~P I  i^i  Fin )  ->  v  C_  I )
14 nfmpt1 4109 . . . . . . . . 9  |-  F/_ y
( y  e.  I  |->  C )
15 nfcv 2419 . . . . . . . . 9  |-  F/_ y
z
1614, 15nffv 5532 . . . . . . . 8  |-  F/_ y
( ( y  e.  I  |->  C ) `  z )
17 nfcv 2419 . . . . . . . 8  |-  F/_ z
( ( y  e.  I  |->  C ) `  y )
18 fveq2 5525 . . . . . . . 8  |-  ( z  =  y  ->  (
( y  e.  I  |->  C ) `  z
)  =  ( ( y  e.  I  |->  C ) `  y ) )
1916, 17, 18cbviin 3940 . . . . . . 7  |-  |^|_ z  e.  v  ( (
y  e.  I  |->  C ) `  z )  =  |^|_ y  e.  v  ( ( y  e.  I  |->  C ) `  y )
20 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  V  /\  y  e.  I
)  /\  C  C_  B
)  ->  y  e.  I )
21 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  y  e.  I
)  /\  C  C_  B
)  ->  C  C_  B
)
22 simpll 730 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  y  e.  I
)  /\  C  C_  B
)  ->  B  e.  V )
23 ssexg 4160 . . . . . . . . . . . . . 14  |-  ( ( C  C_  B  /\  B  e.  V )  ->  C  e.  _V )
2421, 22, 23syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  V  /\  y  e.  I
)  /\  C  C_  B
)  ->  C  e.  _V )
255fvmpt2 5608 . . . . . . . . . . . . 13  |-  ( ( y  e.  I  /\  C  e.  _V )  ->  ( ( y  e.  I  |->  C ) `  y )  =  C )
2620, 24, 25syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( B  e.  V  /\  y  e.  I
)  /\  C  C_  B
)  ->  ( (
y  e.  I  |->  C ) `  y )  =  C )
2726ex 423 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  y  e.  I )  ->  ( C  C_  B  ->  ( ( y  e.  I  |->  C ) `  y )  =  C ) )
2827ralimdva 2621 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( A. y  e.  I  C  C_  B  ->  A. y  e.  I  ( (
y  e.  I  |->  C ) `  y )  =  C ) )
2928imp 418 . . . . . . . . 9  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  ->  A. y  e.  I 
( ( y  e.  I  |->  C ) `  y )  =  C )
30 ssralv 3237 . . . . . . . . 9  |-  ( v 
C_  I  ->  ( A. y  e.  I 
( ( y  e.  I  |->  C ) `  y )  =  C  ->  A. y  e.  v  ( ( y  e.  I  |->  C ) `  y )  =  C ) )
3129, 30mpan9 455 . . . . . . . 8  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  C_  I )  ->  A. y  e.  v 
( ( y  e.  I  |->  C ) `  y )  =  C )
32 iineq2 3922 . . . . . . . 8  |-  ( A. y  e.  v  (
( y  e.  I  |->  C ) `  y
)  =  C  ->  |^|_ y  e.  v  ( ( y  e.  I  |->  C ) `  y
)  =  |^|_ y  e.  v  C )
3331, 32syl 15 . . . . . . 7  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  C_  I )  ->  |^|_ y  e.  v  ( ( y  e.  I  |->  C ) `  y
)  =  |^|_ y  e.  v  C )
3419, 33syl5eq 2327 . . . . . 6  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  C_  I )  ->  |^|_ z  e.  v  ( ( y  e.  I  |->  C ) `  z
)  =  |^|_ y  e.  v  C )
3534ineq2d 3370 . . . . 5  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  C_  I )  -> 
( B  i^i  |^|_ z  e.  v  (
( y  e.  I  |->  C ) `  z
) )  =  ( B  i^i  |^|_ y  e.  v  C )
)
3635eqeq2d 2294 . . . 4  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  C_  I )  -> 
( A  =  ( B  i^i  |^|_ z  e.  v  ( (
y  e.  I  |->  C ) `  z ) )  <->  A  =  ( B  i^i  |^|_ y  e.  v  C ) ) )
3713, 36sylan2 460 . . 3  |-  ( ( ( B  e.  V  /\  A. y  e.  I  C  C_  B )  /\  v  e.  ( ~P I  i^i  Fin ) )  ->  ( A  =  ( B  i^i  |^|_ z  e.  v  (
( y  e.  I  |->  C ) `  z
) )  <->  A  =  ( B  i^i  |^|_ y  e.  v  C )
) )
3837rexbidva 2560 . 2  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  -> 
( E. v  e.  ( ~P I  i^i 
Fin ) A  =  ( B  i^i  |^|_ z  e.  v  (
( y  e.  I  |->  C ) `  z
) )  <->  E. v  e.  ( ~P I  i^i 
Fin ) A  =  ( B  i^i  |^|_ y  e.  v  C
) ) )
399, 38bitrd 244 1  |-  ( ( B  e.  V  /\  A. y  e.  I  C 
C_  B )  -> 
( A  e.  ( fi `  ( { B }  u.  ran  ( y  e.  I  |->  C ) ) )  <->  E. v  e.  ( ~P I  i^i  Fin ) A  =  ( B  i^i  |^|_ y  e.  v  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   {csn 3640   |^|_ciin 3906    e. cmpt 4077   ran crn 4690   -->wf 5251   ` cfv 5255   Fincfn 6863   ficfi 7164
This theorem is referenced by:  cmpfiiin  26772
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-fin 6867  df-fi 7165
  Copyright terms: Public domain W3C validator