Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrint Structured version   Unicode version

Theorem elrint 4083
 Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem elrint
StepHypRef Expression
1 elin 3522 . 2
2 elintg 4050 . . 3
32pm5.32i 619 . 2
41, 3bitri 241 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359   wcel 1725  wral 2697   cin 3311  cint 4042 This theorem is referenced by:  elrint2  4084  ptcnplem  17643  tmdgsum2  18116  limciun  19771 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950  df-in 3319  df-int 4043
 Copyright terms: Public domain W3C validator