MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrn2g Structured version   Unicode version

Theorem elrn2g 5063
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
elrn2g  |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem elrn2g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeq2 3987 . . . 4  |-  ( y  =  A  ->  <. x ,  y >.  =  <. x ,  A >. )
21eleq1d 2504 . . 3  |-  ( y  =  A  ->  ( <. x ,  y >.  e.  B  <->  <. x ,  A >.  e.  B ) )
32exbidv 1637 . 2  |-  ( y  =  A  ->  ( E. x <. x ,  y
>.  e.  B  <->  E. x <. x ,  A >.  e.  B ) )
4 dfrn3 5062 . 2  |-  ran  B  =  { y  |  E. x <. x ,  y
>.  e.  B }
53, 4elab2g 3086 1  |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178   E.wex 1551    = wceq 1653    e. wcel 1726   <.cop 3819   ran crn 4881
This theorem is referenced by:  elrng  5064  fo2ndf  6455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4215  df-opab 4269  df-cnv 4888  df-dm 4890  df-rn 4891
  Copyright terms: Public domain W3C validator