MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt2g Unicode version

Theorem elrnmpt2g 5956
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
elrnmpt2g  |-  ( D  e.  V  ->  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
Distinct variable groups:    y, A    x, y, D
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)    V( x, y)

Proof of Theorem elrnmpt2g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2289 . . 3  |-  ( z  =  D  ->  (
z  =  C  <->  D  =  C ) )
212rexbidv 2586 . 2  |-  ( z  =  D  ->  ( E. x  e.  A  E. y  e.  B  z  =  C  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
3 rngop.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43rnmpt2 5954 . 2  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
52, 4elab2g 2916 1  |-  ( D  e.  V  ->  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   E.wrex 2544   ran crn 4690    e. cmpt2 5860
This theorem is referenced by:  ordtbas2  16921  txopn  17297  elsx  23525
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-cnv 4697  df-dm 4699  df-rn 4700  df-oprab 5862  df-mpt2 5863
  Copyright terms: Public domain W3C validator