Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptg Structured version   Unicode version

Theorem elrnmptg 5112
 Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1
Assertion
Ref Expression
elrnmptg
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem elrnmptg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4
21rnmpt 5108 . . 3
32eleq2i 2499 . 2
4 r19.29 2838 . . . . 5
5 eleq1 2495 . . . . . . . 8
65biimparc 474 . . . . . . 7
7 elex 2956 . . . . . . 7
86, 7syl 16 . . . . . 6
98rexlimivw 2818 . . . . 5
104, 9syl 16 . . . 4
1110ex 424 . . 3
12 eqeq1 2441 . . . . 5
1312rexbidv 2718 . . . 4
1413elab3g 3080 . . 3
1511, 14syl 16 . 2
163, 15syl5bb 249 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  cab 2421  wral 2697  wrex 2698  cvv 2948   cmpt 4258   crn 4871 This theorem is referenced by:  elrnmpti  5113 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-mpt 4260  df-cnv 4878  df-dm 4880  df-rn 4881
 Copyright terms: Public domain W3C validator