MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsnres Unicode version

Theorem elsnres 4991
Description: Memebership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.)
Hypothesis
Ref Expression
elsnres.1  |-  C  e. 
_V
Assertion
Ref Expression
elsnres  |-  ( A  e.  ( B  |`  { C } )  <->  E. y
( A  =  <. C ,  y >.  /\  <. C ,  y >.  e.  B
) )
Distinct variable groups:    y, A    y, B    y, C

Proof of Theorem elsnres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elres 4990 . 2  |-  ( A  e.  ( B  |`  { C } )  <->  E. x  e.  { C } E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B ) )
2 rexcom4 2807 . 2  |-  ( E. x  e.  { C } E. y ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B )  <->  E. y E. x  e.  { C }  ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B ) )
3 elsnres.1 . . . 4  |-  C  e. 
_V
4 opeq1 3796 . . . . . 6  |-  ( x  =  C  ->  <. x ,  y >.  =  <. C ,  y >. )
54eqeq2d 2294 . . . . 5  |-  ( x  =  C  ->  ( A  =  <. x ,  y >.  <->  A  =  <. C ,  y >. )
)
64eleq1d 2349 . . . . 5  |-  ( x  =  C  ->  ( <. x ,  y >.  e.  B  <->  <. C ,  y
>.  e.  B ) )
75, 6anbi12d 691 . . . 4  |-  ( x  =  C  ->  (
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  <->  ( A  = 
<. C ,  y >.  /\  <. C ,  y
>.  e.  B ) ) )
83, 7rexsn 3675 . . 3  |-  ( E. x  e.  { C }  ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  ( A  =  <. C ,  y
>.  /\  <. C ,  y
>.  e.  B ) )
98exbii 1569 . 2  |-  ( E. y E. x  e. 
{ C }  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  <->  E. y ( A  =  <. C ,  y
>.  /\  <. C ,  y
>.  e.  B ) )
101, 2, 93bitri 262 1  |-  ( A  e.  ( B  |`  { C } )  <->  E. y
( A  =  <. C ,  y >.  /\  <. C ,  y >.  e.  B
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   E.wrex 2544   _Vcvv 2788   {csn 3640   <.cop 3643    |` cres 4691
This theorem is referenced by:  frxp  6225
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-rel 4696  df-res 4701
  Copyright terms: Public domain W3C validator