MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg2 Unicode version

Theorem eltg2 16712
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, V, y

Proof of Theorem eltg2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tgval2 16710 . . 3  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  (
x  e.  y  /\  y  C_  z ) ) } )
21eleq2d 2363 . 2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  e.  { z  |  ( z 
C_  U. B  /\  A. x  e.  z  E. y  e.  B  (
x  e.  y  /\  y  C_  z ) ) } ) )
3 elex 2809 . . . 4  |-  ( A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) }  ->  A  e.  _V )
43adantl 452 . . 3  |-  ( ( B  e.  V  /\  A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) } )  ->  A  e.  _V )
5 uniexg 4533 . . . . . 6  |-  ( B  e.  V  ->  U. B  e.  _V )
6 ssexg 4176 . . . . . 6  |-  ( ( A  C_  U. B  /\  U. B  e.  _V )  ->  A  e.  _V )
75, 6sylan2 460 . . . . 5  |-  ( ( A  C_  U. B  /\  B  e.  V )  ->  A  e.  _V )
87ancoms 439 . . . 4  |-  ( ( B  e.  V  /\  A  C_  U. B )  ->  A  e.  _V )
98adantrr 697 . . 3  |-  ( ( B  e.  V  /\  ( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )  ->  A  e.  _V )
10 sseq1 3212 . . . . 5  |-  ( z  =  A  ->  (
z  C_  U. B  <->  A  C_  U. B
) )
11 sseq2 3213 . . . . . . . 8  |-  ( z  =  A  ->  (
y  C_  z  <->  y  C_  A ) )
1211anbi2d 684 . . . . . . 7  |-  ( z  =  A  ->  (
( x  e.  y  /\  y  C_  z
)  <->  ( x  e.  y  /\  y  C_  A ) ) )
1312rexbidv 2577 . . . . . 6  |-  ( z  =  A  ->  ( E. y  e.  B  ( x  e.  y  /\  y  C_  z )  <->  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
1413raleqbi1dv 2757 . . . . 5  |-  ( z  =  A  ->  ( A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
1510, 14anbi12d 691 . . . 4  |-  ( z  =  A  ->  (
( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) )  <->  ( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) ) )
1615elabg 2928 . . 3  |-  ( A  e.  _V  ->  ( A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) }  <-> 
( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) ) )
174, 9, 16pm5.21nd 868 . 2  |-  ( B  e.  V  ->  ( A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) }  <-> 
( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) ) )
182, 17bitrd 244 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   U.cuni 3843   ` cfv 5271   topGenctg 13358
This theorem is referenced by:  eltg2b  16713  tg1  16718  tgcl  16723  elmopn  18004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-topgen 13360
  Copyright terms: Public domain W3C validator