MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg3i Unicode version

Theorem eltg3i 16805
Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
eltg3i  |-  ( ( B  e.  V  /\  A  C_  B )  ->  U. A  e.  ( topGen `
 B ) )

Proof of Theorem eltg3i
StepHypRef Expression
1 simpr 447 . . . . 5  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  C_  B )
2 pwuni 4287 . . . . 5  |-  A  C_  ~P U. A
31, 2jctir 524 . . . 4  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( A  C_  B  /\  A  C_  ~P U. A ) )
4 ssin 3467 . . . 4  |-  ( ( A  C_  B  /\  A  C_  ~P U. A
)  <->  A  C_  ( B  i^i  ~P U. A
) )
53, 4sylib 188 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  C_  ( B  i^i  ~P
U. A ) )
6 uniss 3929 . . 3  |-  ( A 
C_  ( B  i^i  ~P
U. A )  ->  U. A  C_  U. ( B  i^i  ~P U. A
) )
75, 6syl 15 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  ->  U. A  C_  U. ( B  i^i  ~P U. A
) )
8 eltg 16801 . . 3  |-  ( B  e.  V  ->  ( U. A  e.  ( topGen `
 B )  <->  U. A  C_  U. ( B  i^i  ~P U. A ) ) )
98adantr 451 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( U. A  e.  ( topGen `  B )  <->  U. A  C_  U. ( B  i^i  ~P U. A
) ) )
107, 9mpbird 223 1  |-  ( ( B  e.  V  /\  A  C_  B )  ->  U. A  e.  ( topGen `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1710    i^i cin 3227    C_ wss 3228   ~Pcpw 3701   U.cuni 3908   ` cfv 5337   topGenctg 13441
This theorem is referenced by:  eltg3  16806  tgiun  16823  tgidm  16824  tgrest  16996  leordtval2  17048  ontgval  25429  fnemeet1  25639  fnejoin2  25642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-iota 5301  df-fun 5339  df-fv 5345  df-topgen 13443
  Copyright terms: Public domain W3C validator