Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltintpar Unicode version

Theorem eltintpar 25899
Description: An element of the intersection of a Tarski's class with the class of the ordinal numbers is a part of the intersection. (Contributed by FL, 20-Apr-2011.)
Assertion
Ref Expression
eltintpar  |-  ( T  e.  Tarski  ->  ( A  e.  ( On  i^i  T
)  ->  A  C_  ( On  i^i  T ) ) )

Proof of Theorem eltintpar
StepHypRef Expression
1 elin 3358 . . . . 5  |-  ( A  e.  ( On  i^i  T )  <->  ( A  e.  On  /\  A  e.  T ) )
2 onss 4582 . . . . . . . 8  |-  ( A  e.  On  ->  A  C_  On )
32ad2antrr 706 . . . . . . 7  |-  ( ( ( A  e.  On  /\  A  e.  T )  /\  T  e.  Tarski )  ->  A  C_  On )
4 eloni 4402 . . . . . . . . 9  |-  ( A  e.  On  ->  Ord  A )
5 ordtr 4406 . . . . . . . . 9  |-  ( Ord 
A  ->  Tr  A
)
6 tsktrss 8383 . . . . . . . . . . 11  |-  ( ( T  e.  Tarski  /\  Tr  A  /\  A  e.  T
)  ->  A  C_  T
)
763exp 1150 . . . . . . . . . 10  |-  ( T  e.  Tarski  ->  ( Tr  A  ->  ( A  e.  T  ->  A  C_  T )
) )
87com3l 75 . . . . . . . . 9  |-  ( Tr  A  ->  ( A  e.  T  ->  ( T  e.  Tarski  ->  A  C_  T
) ) )
94, 5, 83syl 18 . . . . . . . 8  |-  ( A  e.  On  ->  ( A  e.  T  ->  ( T  e.  Tarski  ->  A  C_  T ) ) )
109imp31 421 . . . . . . 7  |-  ( ( ( A  e.  On  /\  A  e.  T )  /\  T  e.  Tarski )  ->  A  C_  T
)
113, 10jca 518 . . . . . 6  |-  ( ( ( A  e.  On  /\  A  e.  T )  /\  T  e.  Tarski )  ->  ( A  C_  On  /\  A  C_  T
) )
1211ex 423 . . . . 5  |-  ( ( A  e.  On  /\  A  e.  T )  ->  ( T  e.  Tarski  -> 
( A  C_  On  /\  A  C_  T )
) )
131, 12sylbi 187 . . . 4  |-  ( A  e.  ( On  i^i  T )  ->  ( T  e.  Tarski  ->  ( A  C_  On  /\  A  C_  T
) ) )
1413impcom 419 . . 3  |-  ( ( T  e.  Tarski  /\  A  e.  ( On  i^i  T
) )  ->  ( A  C_  On  /\  A  C_  T ) )
15 ssin 3391 . . 3  |-  ( ( A  C_  On  /\  A  C_  T )  <->  A  C_  ( On  i^i  T ) )
1614, 15sylib 188 . 2  |-  ( ( T  e.  Tarski  /\  A  e.  ( On  i^i  T
) )  ->  A  C_  ( On  i^i  T
) )
1716ex 423 1  |-  ( T  e.  Tarski  ->  ( A  e.  ( On  i^i  T
)  ->  A  C_  ( On  i^i  T ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684    i^i cin 3151    C_ wss 3152   Tr wtr 4113   Ord word 4391   Oncon0 4392   Tarskictsk 8370
This theorem is referenced by:  carinttar  25902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-tsk 8371
  Copyright terms: Public domain W3C validator