MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltop2 Unicode version

Theorem eltop2 16713
Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
eltop2  |-  ( J  e.  Top  ->  ( A  e.  J  <->  A. x  e.  A  E. y  e.  J  ( x  e.  y  /\  y  C_  A ) ) )
Distinct variable groups:    x, y, A    x, J, y

Proof of Theorem eltop2
StepHypRef Expression
1 tgtop 16711 . . 3  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
21eleq2d 2350 . 2  |-  ( J  e.  Top  ->  ( A  e.  ( topGen `  J )  <->  A  e.  J ) )
3 eltg2b 16697 . 2  |-  ( J  e.  Top  ->  ( A  e.  ( topGen `  J )  <->  A. x  e.  A  E. y  e.  J  ( x  e.  y  /\  y  C_  A ) ) )
42, 3bitr3d 246 1  |-  ( J  e.  Top  ->  ( A  e.  J  <->  A. x  e.  A  E. y  e.  J  ( x  e.  y  /\  y  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   ` cfv 5255   topGenctg 13342   Topctop 16631
This theorem is referenced by:  isclo  16824  cncnp  17009  ist1-2  17075  hauscmp  17134  llycmpkgen2  17245  ptpjopn  17306  txkgen  17346  xkococn  17354  xkoinjcn  17381  fclscf  17720  subgntr  17789  opnsubg  17790  divstgpopn  17802  prdsxmslem2  18075  zdis  18322  efopn  20005  cvmopnlem  23809  neibastop3  26311
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-topgen 13344  df-top 16636
  Copyright terms: Public domain W3C validator