MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltopss Unicode version

Theorem eltopss 16935
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
1open.1  |-  X  = 
U. J
Assertion
Ref Expression
eltopss  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  C_  X )

Proof of Theorem eltopss
StepHypRef Expression
1 elssuni 4003 . . 3  |-  ( A  e.  J  ->  A  C_ 
U. J )
2 1open.1 . . 3  |-  X  = 
U. J
31, 2syl6sseqr 3355 . 2  |-  ( A  e.  J  ->  A  C_  X )
43adantl 453 1  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  C_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    C_ wss 3280   U.cuni 3975   Topctop 16913
This theorem is referenced by:  riinopn  16936  opncld  17052  ntrval2  17070  ntrss3  17079  cmclsopn  17081  opncldf1  17103  opnneissb  17133  opnssneib  17134  opnneiss  17137  neitr  17198  restntr  17200  cnpnei  17282  imasnopn  17675  cnextcn  18051  utopreg  18235  opnregcld  26223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-v 2918  df-in 3287  df-ss 3294  df-uni 3976
  Copyright terms: Public domain W3C validator