MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltopss Unicode version

Theorem eltopss 16653
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
1open.1  |-  X  = 
U. J
Assertion
Ref Expression
eltopss  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  C_  X )

Proof of Theorem eltopss
StepHypRef Expression
1 elssuni 3855 . . 3  |-  ( A  e.  J  ->  A  C_ 
U. J )
2 1open.1 . . 3  |-  X  = 
U. J
31, 2syl6sseqr 3225 . 2  |-  ( A  e.  J  ->  A  C_  X )
43adantl 452 1  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  C_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   U.cuni 3827   Topctop 16631
This theorem is referenced by:  riinopn  16654  opncld  16770  ntrval2  16788  ntrss3  16797  cmclsopn  16799  opncldf1  16821  opnneissb  16851  opnssneib  16852  opnneiss  16855  restntr  16912  cnpnei  16993  opnregcld  26248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-in 3159  df-ss 3166  df-uni 3828
  Copyright terms: Public domain W3C validator